
Read the ExtensiveAutomation
Documentation

Release 20.0

ExtensiveAutomation

Oct 28, 2019

About

1 Extensive Automation 1
1.1 Concepts . 1
1.2 Usages . 2
1.3 License . 2
1.4 Author . 2
1.5 Contact . 3

2 Download 5

3 Changes Logs 7
3.1 Current version . 7
3.2 Previous versions . 7

4 Client 17
4.1 The workspace . 18
4.2 The analyzer . 26
4.3 Server Explorer . 28
4.4 Settings . 29
4.5 Complements . 30

5 Toolbox 35
5.1 Deployment . 36
5.2 More . 37

6 Web interface 41
6.1 Tests part . 41
6.2 Admin part . 41

7 Get started 43
7.1 Connection to the server . 43
7.2 Write a test . 44
7.3 Write a scenario . 44
7.4 Execute a test . 46
7.5 Result analysing . 46
7.6 Best practices . 47

8 Tests examples 49

i

8.1 Testcase (unit) . 49
8.2 Testcase (suite) . 49
8.3 variables . 50
8.4 Scenario . 51
8.5 Test campaign . 52
8.6 Rest API . 52
8.7 SSH controls . 54
8.8 Web browsers . 54
8.9 Android mobile . 57

9 Tests Snippets 61
9.1 Shared data between tests . 61
9.2 Basics actions . 63
9.3 Data Generators . 65
9.4 Networks protocols . 67
9.5 User Interface . 69
9.6 Checks . 71

10 Global variables 73
10.1 Add/delete a variable . 73
10.2 Describe environment test . 73
10.3 Import/export variables . 74

11 Assisted designs 75
11.1 Framework Tabulation . 76
11.2 System tab . 77
11.3 Tabulation application . 78
11.4 Browser Tabulation . 80
11.5 Android Tabulation . 82

12 Troubleshooting 87
12.1 Errors codes . 87
12.2 How to fix . 87

13 Installation 89
13.1 Server . 89
13.2 Web Client . 89
13.3 Qt Client . 89
13.4 Toolbox . 89
13.5 Plugins for client . 89

14 Administration 91
14.1 Start/Stop of the server . 91
14.2 Server status’s . 92
14.3 Server settings . 92

15 Projects 93
15.1 Add a project . 93
15.2 Delete a project . 93
15.3 Link a project to a user . 93

16 Users 95
16.1 Add user . 95
16.2 Delete a user . 96

ii

17 Troubleshooting 97
17.1 Logs . 97
17.2 Frequently Asked Questions . 99

18 Tests definitions 101
18.1 Test Unit . 101
18.2 Test Suite . 102
18.3 Test Plan . 102
18.4 Test Global . 102

19 The fundamentals 103
19.1 Test case . 103
19.2 Test steps . 104
19.3 Cancellation of a test . 104
19.4 Adding trace . 105
19.5 Data . 105
19.6 Put on hold . 107
19.7 Interaction with the tester . 107
19.8 Parameters of a test . 108

20 The tracability 111
20.1 The events . 111
20.2 Test reports . 114
20.3 The logs . 118

21 Interoperability 119
21.1 Adapters . 119
21.2 Third party tools . 122
21.3 Agents . 124

22 Test engine 125
22.1 The scheduler . 125
22.2 Parallelized executions . 127
22.3 Synchronized executions . 128
22.4 Distributed executions . 129

23 Advanced examples 131
23.1 SSH adapter . 131
23.2 HTTP adapter . 132
23.3 Telnet adapter . 133
23.4 MySQL adapter . 134
23.5 SNMP adapter . 135
23.6 FTP adapter (s) . 136
23.7 SFTP adapter . 137
23.8 ChartJS librairies . 138
23.9 “Text” parameter . 140
23.10“Json” parameter . 141
23.11“alias” parameter . 141
23.12“global” parameter . 142
23.13“Dataset” parameter . 142
23.14Using an agent . 143

24 Requirements 145
24.1 Server . 145
24.2 Customer . 145

iii

24.3 Toolbox . 146

25 Architecture 147
25.1 Server . 147
25.2 Graphic Client . 148
25.3 Agents . 148

26 Specifications 149
26.1 Version cycle . 149
26.2 Server tree . 149
26.3 Data model . 150
26.4 Passwords management . 150
26.5 File format . 151
26.6 Storage of test results . 152
26.7 Control Agents . 153
26.8 The server logs . 154

27 Contributions 155
27.1 Solution development . 155
27.2 Plugins development for servers . 155
27.3 Plugins development for qt client and agents . 155
27.4 Documentation . 156

28 API 157
28.1 Authentication . 157
28.2 Usage example . 158
28.3 Ressources . 158

iv

CHAPTER1

Extensive Automation

Welcome on the Extensive Automation project.

1.1 Concepts

ExtensiveAutomation is a generic automation framework for integration, regression and end-to-end usages.
The framework provided a rich and collaborative workspace environment.

The project have several purposes since the creation:

• Unify all testing tools in one environnement

• Provide a complete testing dashboard

• Make automation easy

• Automate everything from anywhere.

• Provide a user friendly environment.

1

Read the ExtensiveAutomation Documentation, Release 20.0

1.2 Usages

This solution is designed to make a lot of thing like:

• test automation in integration environment

• regression test automation

• end to end test automation

• deployment automation

Note: The solution is written in Python and also all tests.

1.3 License

This environment is open source, and is freely available under the LGPL 2.1 version. All source code is
available in github (https://github.com/ExtensiveAutomation).

1.4 Author

Started since 2010, the solution was developed by Denis Machard. This project is an effort, driven in my
spare time.

If you want to sponsor me then I am accepting donations via PayPal. The money received will be used to
cover web site costs, domain name reservation and more :wink:.

2 Chapter 1. Extensive Automation

https://github.com/ExtensiveAutomation

Read the ExtensiveAutomation Documentation, Release 20.0

1.5 Contact

If you have any questions, you can contact me with:

• email d.machard@gmail.com

• twitter https://twitter.com/Extensive_Auto

• from the google forum https://groups.google.com/forum/#!forum/extensive-automation-users

• github https://github.com/ExtensiveAutomation

1.5. Contact 3

mailto:d.machard@gmail.com
https://twitter.com/Extensive_Auto
https://groups.google.com/forum/#!forum/extensive-automation-users
https://github.com/ExtensiveAutomation

Read the ExtensiveAutomation Documentation, Release 20.0

4 Chapter 1. Extensive Automation

CHAPTER2

Download

A complete release is generated every two months or less and each component can also evolve at its own
rate. The solution is made of several components.

The solution can be downloaded from the website https://www.extensiveautomation.org

The server is available throught several types of packages:

• from sources

• docker image

• tar.gz

• on pypi package

Plugins for server are available through:

• source on github

• on pypi package

The graphical client is available in portable version.

The toolbox is available in 2 modes:

• portable version

• command line

Note: Client and toolbox can be run on Windows and Linux, in 64bits only.

Warning: The server must be executed in Linux.

5

https://www.extensiveautomation.org

Read the ExtensiveAutomation Documentation, Release 20.0

Warning: Administrators rights can be necessary to execute properly the client or the toolbox.

6 Chapter 2. Download

CHAPTER3

Changes Logs

3.1 Current version

Note: Version 21.4.0 available since 10/28/2019

• test framework: info messages added on technical error

• test framework: task duration added in raw event

• some errors messages improved

• new specific python module for variables management

A complete release notes is available in the server package.

3.2 Previous versions

Version 21.3.0 available since 10/02/2019

• New function to get run details from REST API

• New integration tests added in the github worflow

• Project access granted to all projects for administrator

• Some bugs fixed

Version 21.2.0 available since 09/20/2019

• Some bugs fixed on the rest API

• PEP8 support

• New function to return all tasks from the rest API

Version 21.1.0 available since 08/25/2019

7

Read the ExtensiveAutomation Documentation, Release 20.0

• No more return settings file content from rest api

• Continue code cleanup

• Disable email test result notification on Windows platform

• Variables encryption database has been removed, prefer another way to do it.

• Salt used on user’s password is now re-generated each time during database creation

• Folders for projects are automatically created if missing during start of the server

• Users manager: default users can be now removed

• Cleanup on the model of the user table

• Default users, projects, and global variables can be now modified from json files

• Support remote ldap simple bind and ntlm authentication for user session

• Test library: test manipulator feature removed

Version 21.0.0 available since 08/10/2019

• Full support for python3 on server side and test framework

• Windows support for server side execution

• Backups folder removed from var, no more needed

• Reorganization of the project files with new python import

• Merge test interop in sut adapters

• New docker image of the server based python3

• New distribution for plugins server on pypi

• New distribution of the server on pypi

Version 20.0.0 available since 07/20/2019

• Image docker available

• Rest API: support for CORS feature

• No more automatic installation provided

• Maximum of dependancies with libraries removed

• No more plugins provided by default

• Probes features removed, replaced by agent

• MySQL database removed, replaced by sqlite

• Optimization of the framework to reduce the CPU usage

• New major version for the Qt client application, user interface improvment

• New major version for the toolbox

• New major version for the web interface, no more provided by default

• Several bugs fixed

Version 19.0.1 available since 08/09/2018

• Bug fix on deployment server, pip command integration

• New name ExtensiveAutomation for the solution

8 Chapter 3. Changes Logs

Read the ExtensiveAutomation Documentation, Release 20.0

• All tests files are stored in XML by default (no more zlib compression)

• Bugs fixes and improvement in REST API

• Initial docker support

• Python 2.6 no more supported on server side

• Cache preview from the client during test writing

• Simplification of tests parameters with “text” and “json”

• SQL queries optimization on server side

• Begin to support python 3.5 on server side

• The client is no more embedded in the server side by default

• New feature to set a security banner on login page of the web interface and app client

• Update of selenium in 3.13.0

• New major version for the app client

• New major version for the toolbox

Version 18.0.0 released on 02/11/2018

• API XmlRPC is removed from the server

• Big improvment of the API REST

• New major client based on the API Rest

• Full support of Qt5.9 for the toolbox and graphical client

• Full support of python 3.6 for the toolbox and graphical client

• Code cleanup

• Several bugs fixed

• Update of selenium in 3.9.0

• The toolbox is no more embedded in the server side by default

Version 17.1.0 released on 10/22/2017

• Improvment in the REST api

• New features in the test framework library

• Several bugs fixed

• Improvment of the graphical interface of the client

• Experimental Ubuntu Support for the graphical client

Version 17.0.0 released on 06/04/2017

• 64bits support by default for the client and toolbox

• New major features in the test framework library

• New swagger for the REST api

• Update of selenium 3 et 2 in the toolbox

• Several bugs fixed

Version 16.1.0 released on 03/30/2017

3.2. Previous versions 9

Read the ExtensiveAutomation Documentation, Release 20.0

• Several bugs fixed

• Improvment of the graphical interface of the client

• Installation improvment

Version 16.0.0 released on 25/02/2017

• Several bugs fixed

• Improvment of the REST api

• Changes on core server

• New features in the test framework library

• Optimization in server side to reduce the number of SQL requests

• Improvment of the graphical interface of the client

• 64bits Support for the graphical client and toolbox

Version 15.0.3 released on 04/11/2016

• Several bugs fixed

• New plugins for the graphical client

• Improvment of the REST API

• New features in the test framework library

• New interop module in test library

Version 14.0.0 released on 27/08/2016

• Several bugs fixed

• New features in the test framework library

• New major features on the REST api

• No more new feature in the XmlRPC api, just bug fix

• New features in the web interface

• Python2.7 no more supported on windows for the graphical client and toolbox

• Integration of the REST api in the graphical client

• Improvment of the graphical interface of the client

• New HP QC ALM plugin for the graphical client

Version 13.0.0 released on 23/06/2016

• Several bugs fixed

• New REST api on the server side

• New features in the test framework library

• Improvment in the core server

• Plugins support for the client and toolbox

• Improvment of the graphical interface of the client

Version 12.1.0 released on 29/04/2016

• Several bugs fixed

10 Chapter 3. Changes Logs

Read the ExtensiveAutomation Documentation, Release 20.0

• New features in the test framework library

• Minors update on the XmlRPC API

• Improvment of the graphical interface of the client

Version 12.0.0 released on 12/02/2016

• Several bugs fixed

• New features on the XmlRPC API

• New features in the test framework library

• New features in the web interface

Version 11.2.0 released on 22/11/2015

• Several bugs fixed

• New features in the test framework library

• Improvment of the scheduler

• New public repository for the test framework library

• Offline installation support

• Minor changes on the XmlRPC api

Version 11.1.0 released on 18/10/2015

• Several bugs fixed

• New features on the XmlRPC API

• New features on the web interface

Version 11.0.0 released on 14/09/2015

• Several bugs fixed

• New features in the web interface

• Merge of agents and probes in the toolbox

• Update in the XmlRPC API

• Python 3.4 support for the graphical client and toolbox

Version 10.1.0 released on 12/07/2015

• Several bugs fixed

• CentOS 4 et 5 no more supported

• New features in the test framework library

• New features in the web interface

Version 10.0.0 released on 28/05/2015

• Several bugs fixed

• New features in the web interface

• Minor changes in the core server

• Update of the documentations

• Improvment of the graphical interface of the client

3.2. Previous versions 11

Read the ExtensiveAutomation Documentation, Release 20.0

Version 9.1.0 released on 22/03/2015

• Several bugs fixed

• New features in the test framework library

• Product installation improved

• Improvment of the graphical interface of the client

Version 9.0.0 released on 05/01/2015

• Several bugs fixed

• New features in the test framework library

• Python 2.4 no more supported

• New features in the web interface

• Improvment of the graphical interface of the client

Version 8.0.0 released on 25/10/2014

• Several bugs fixed

• Improvment of the graphical interface of the client

• New features in the test framework library

• Minors changes in the XmlRPC API

• New features in the web interface

Version 7.1.0 released on 20/09/2014

• Several bugs fixed

• Documentations updated

• Optimization in server side to prepare a test

• New features in the core

• New features in the test framework library

• Improvment of the graphical interface of the client

Version 7.0.0 released on 08/08/2014

• Several bugs fixed

• Improvment in the scheduler

• Reverse proxy added on the front of the server

• Websockets support, activated by default

• New documentations

• tcp/443 used by default on all components

• SSL proxy support

• SSL used by default for agents and probes

• Improvment of the graphical interface of the client

Version 6.2.0 released on 02/06/2014

• Several bugs fixed

12 Chapter 3. Changes Logs

Read the ExtensiveAutomation Documentation, Release 20.0

• Agents update

• Minors changes in the XmlRPC API

• New features in the test framework library

• Improvment of the scheduler

Version 6.1.0 released on 25/04/2014

• Several bugs fixed

• New features in the web interface

• New features in the test framework library

• Agents improvments

Version 6.0.0 released on 23/03/2014

• Several bugs fixed

• New packages for adapters and libraries

• New features in the XmlRPC API

• New features in the test framework library

• No more link with the twisted library

• SSL support on XmlRPC api

• Proxy socks4 support

• Agents Support

Version 5.2.0 released on 12/01/2014

• Several bugs fixed

• New minors features in the core server

Version 5.1.0 released on 08/12/2013

• New features in the web interface

• Several bugs fixed

• New features in the test framework library

Version 5.0.0 released on 15/09/2013

• Several bugs fixed

• New major features in the test framework library

• Improvment of the scheduler

Version 4.2.0 released on 08/04/2013

• Several bugs fixed

• New features in the web interface

Version 4.1.0 released on 10/03/2013

• Several bugs fixed

• New features in the web interface

• CentOS 6 Support

3.2. Previous versions 13

Read the ExtensiveAutomation Documentation, Release 20.0

• Improvment of the scheduler

Version 4.0.0 released on 30/01/2013

• Several bugs fixed

• New features in the test framework library

• SSL support for the web interface

• New authentification method with sha1 and salt

• New features in the XmlRPC API

Version 3.2.0 released on 29/09/2012

• Several bugs fixed

• New features in the test framework library

Version 3.1.0 released on 14/07/2012

• Several bugs fixed

• New features in the test framework library

• Improvment of the scheduler

• New features in the XmlRPC API

Version 3.0.0 released on 09/06/2012

• Several bugs fixed

• New features in the XmlRPC API

• Improvment of the scheduler

• New repositories for adapters and backups

Version 2.2.0 released on 28/03/2012

• New majors features in the XmlRPC API

• Several bugs fixed

• New features in the test framework library

Version 2.0.0 released on 27/02/2012

• New features in the XmlRPC API

• Documentation added for the test framework and adapters

• Several bugs fixed

• Probes support

Version 1.2.0 released on 14/01/2012

• Improvment of the scheduler

• New features in the XmlRPC API

• New features in the test framework library

• Interface web added

• Several bugs fixed

Version 1.0.0 released on 13/12/2011

14 Chapter 3. Changes Logs

Read the ExtensiveAutomation Documentation, Release 20.0

• First official version

• CentOS 5 support

• Several bugs fixed

Version 0.1.0 released on 17/05/2010

• First beta

3.2. Previous versions 15

Read the ExtensiveAutomation Documentation, Release 20.0

16 Chapter 3. Changes Logs

CHAPTER4

Client

The client allows to write and execute automatic tests but also to analyze the results in real time or deferred.
It also allows you to share tests in a simple and effective way. To use the client, you must have a user account
and be able to connect to the test server (tcp/443).

The client can also be used to develop extensions (adapters and libraries) to communicate with the system
to be tested or piloted.

Finally the graphical interface changes according to the level of access:

• tester level: write / execute tests, and analyze the results

• admin level: access to all features

• monitor level: read only access

The interface is divided into 3 main parts:

• the workspace

• the analyzer

• the server explorer

17

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The client is available on Windows and Linux, in 64bits mode

4.1 The workspace

The workspace is composed of 3 main parts:

• access to all file repositories

• access to test design

• online documentation

18 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

4.1.1 Deposit of tests

The client provides access to the two test repositories: remote and local.

The remote repository allows to store its tests on the test server, so to share them with other users. The tree
consists of files and directories. Test management can be done from the client. The tests can be organized
by project if necessary.

4.1. The workspace 19

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The Common project contains re-usable tests and various examples.

Note: The directories Recycle and Sandbox are reserved directories, delete them is impossible.

Note: It is possible to open a test by dragging and dropping the file to the writing space.

The local repository gives the possibility to store his tests on his post, so not shared. This feature is not
enabled by default because it is not in the philosophy of the solution to use it. Nevertheless the deposit can
be activated through the user’s preferences.

Warning: Some features are missing in the local repository, its use is not recommended!

4.1.2 Depositing extensions

The client allows access to the depots of the extensions (adapters and libraries) and can also be used to
develop new ones, which will be stored there too. These extensions are organized by version.

20 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The extensions are developed in Python.

4.1.3 Tests properties

The tests can be enriched with a number of properties. Available properties are:

• the description of the test (author, date of creation, etc . . .)

• incoming and outgoing variables

• the definition of agents and probes used by the test

The Test properties> Test Data> Inputs window contains the list of variables accessible from the test.
Adding variables can be done by right clicking ‘Add parameter’.

4.1. The workspace 21

Read the ExtensiveAutomation Documentation, Release 20.0

Note: To insert a parameter into a test, just drag & drop.

Note: It is possible to choose the version of the adapters and libraries to use for the test

4.1.4 Textual design

The design of a scripting test is possible with unit and suite. This design mode requires knowledge in
development, i.e. python.

22 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

The unit test is a test case. It is divided into 4 sections automatically called by the framework.

The suite test represents one or more test cases. This type of test allows you to run the same test case by
changing the input parameters.

Note: The Ctrl + F shortcut allows you to search for text in your tests.

4.1.5 Assisted design

The design wizard allows you to write tests without knowledge in development. It covers the following
actions:

• Call to the basic functions of the test framework

4.1. The workspace 23

Read the ExtensiveAutomation Documentation, Release 20.0

• SSH test

• Application test with screenshot (based on the Sikuli project)

• Website test (based on the Selenium project)

• Android mobile app test

The wizard is to describe the actions to perform, and if desired export them to a test unit or suite.

4.1.6 Conditional design

Conditional design allows you to build scenarios or test campaigns. This approach does not require develop-
ing knowledge. To perform this type of test, it is necessary to create a new plan or global test.

The test plan makes it possible to write test scenarios by including tests of the type unit or suite.

24 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

The global test is used to describe test campaigns by including tests plan, unit or suite.

Note: It is possible to override the test parameters.

4.1.7 Online documentations

The online documentation is generated by the server, it describes the set of available functions in the test
framework and the different extensions.

4.1. The workspace 25

Read the ExtensiveAutomation Documentation, Release 20.0

Note: A drag & drop from the documentation on a test automatically inserts the skeleton of the function.

4.2 The analyzer

The analyzer makes it possible to follow the execution of a test in real time or deferred. It makes it possible
to display all the events of the test and to facilitate the analysis of the errors.

26 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

4.2.1 Visualization of events

Different types of events are possible (column event type):

• DEBUG

• INFO

• WARNING

• ERROR

• SEND

• RECEIVED

• STEP-STARTED

• STEP-PASSED

• STEP-FAILED

• MATCH-STARTED

• MATCH-INFO

• MATCH-STOPPED

• MATCH-EXCEEDED

Note: Filtering on the ERROR event allows you to quickly see why the test is in error.

4.2. The analyzer 27

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The SEND | RECEIVED filter is used to display messages sent or received by the system to be tested /
piloted.

4.2.2 Detailed view

Selecting an event from the list displays the detailed view. The detailed view displays the content of the
event and more.

4.3 Server Explorer

4.3.1 Visualization of the results

The complete history of test results is available from the client. They are sorted by date and time of execution.
The client can display the reports and download the logs generated during the execution of the test.

4.3.2 Visualization of test reports

Test reports are visible directly from the client. Two types of reports are available:

28 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

• advanced report

• simple report

Note: The reports are exportable in html, xml and csv formats.

4.4 Settings

Client behavior can be changed through the user’s preferences.

4.4. Settings 29

Read the ExtensiveAutomation Documentation, Release 20.0

Note: Preferences are stored in the settings.ini file.

4.5 Complements

It is possible to add plugins in the client. Plugins are to be added to the Plugins directory.

Plugins are accessible in the Plugins menu after restarting the client.

30 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

Note: It is necessary to restart the client to take into account the plugins deployed.

4.5.1 HP ALM plugin

The HP ALM plugin allows you to export tests and results from the Extensive Client to HP ALM QualityCenter.
This approach makes it possible to be independent with respect to QC.

The configuration of the plugin is done in the page ‘‘ Settings‘‘, it is necessary to configure at least:

• username

• the password

• the domain

• the project

To export a test, you must generate the test design from the client and click on the HP ALM plugin available
on the toolbar.

4.5. Complements 31

Read the ExtensiveAutomation Documentation, Release 20.0

The export of the results can be done from the archive exploration window, The plugin must be available in
the toolbar when a test report is loaded.

Note: The plugin is compatible with an HP ALM QC> = 12, the REST API is used.

4.5.2 Jenkins plugin

The Jenkins plugin does not do much in this version . . . It just provides a link to the web interface of its
favorite Jenkins.

4.5.3 Shell Recorder Plugin

The Shell Recorder plugin allows you to import a sequence of shell commands into the design wizard and
generate the associated test. It allows to replay easily a sequence of commands.

32 Chapter 4. Client

Read the ExtensiveAutomation Documentation, Release 20.0

The first step is to import an ssh session (from a putty terminal for example) from the clipboard or by directly
importing a text file containing the sequence of shell commands.

The plugin automatically detects the prompt in the sequence to parse the associated commands and results.
If the prompt is not detected, it can be changed manually.

4.5.4 SeleniumIDE Plugin

The use of the SeleniumIDE plugin involves basic use. It can convert a file saved with the SeleniumIDE plugin
of firefox in the design assistant.

Tip: It is more efficient to use the live assistant to be in tune with the philosophy of the solution.

4.5. Complements 33

Read the ExtensiveAutomation Documentation, Release 20.0

34 Chapter 4. Client

CHAPTER5

Toolbox

The toolbox allows you to start agents on dedicated workstations.

• Agents are required to run tests with Selenium on dedicated workstations or to deport the execution
of a test.

35

Read the ExtensiveAutomation Documentation, Release 20.0

5.1 Deployment

This window allows you to choose the agent or probe to start. The type of agent or probe to start can be
chosen in the drop-down list. Finally, an agent or probe needs to be registered with the test server in order
to use it.

An agent will allow you to perform a distributed run of your tests. For example, an agent deployed on several
machines will allow to run the same test on different environment to test or pilot.

The complete list of available agents are described in the Server Add-ons> Agents chapter.

Note: The agent name or probe must be unique for successful registration.

Tip: For a better visibility of the agents available, it is advisable to respect the following formalism for the
names:

[Agent | probe] [Environment] [prénom_testeur] [name] [instance-number]. . .

Example: agent.win.denis.socket01

36 Chapter 5. Toolbox

Read the ExtensiveAutomation Documentation, Release 20.0

Example of a deployed and running agent:

5.2 More

The toolbox can be enriched with new plugins.

5.2. More 37

Read the ExtensiveAutomation Documentation, Release 20.0

To do this, follow the procedure described in the chapter Contributions> Development plugins> Toolboxes.
Plugins are to be dropped into the Plugins directory.

After restarting the toolbox, the add-in appears in the list of “external” agents

38 Chapter 5. Toolbox

Read the ExtensiveAutomation Documentation, Release 20.0

5.2. More 39

Read the ExtensiveAutomation Documentation, Release 20.0

40 Chapter 5. Toolbox

CHAPTER6

Web interface

6.1 Tests part

6.1.1 Global variables

The shared variables enable to describe your dataset. JSON format must be used. These variables are reach-
able from all tests.

6.2 Admin part

6.2.1 Users

Users account must be created to use properly the product. The creation of users can be done through the
web interface or from the rest api.

Some parameters must be provided:

• username

• password

• privilegies (admin, monitor, tester)

• authorized projects

Note: Tests results can be received by email if the account is configured with an email.

41

Read the ExtensiveAutomation Documentation, Release 20.0

6.2.2 Projects

Tests files can be organized per project. The adding or removing of a project can be done from the web
interface or the REST api.

Note: The Common project exists by default and can be read from all users, this project cannot be removed.

42 Chapter 6. Web interface

CHAPTER7

Get started

7.1 Connection to the server

After the oppening of the client, the first step is to connect to the remote server. To do that, you need an
account and the remote address of your automation server.

The connection window is available from the Get Started > Connect menu or from the welcome tabulation.
If the connection is successfull, the user can see all remote tests available.

Note: The admin user can be used in the discover of the solution.

43

Read the ExtensiveAutomation Documentation, Release 20.0

7.2 Write a test

The first utilization consists to create a very simple testcase and display a parameter.

1. Create a test of the type Unit

2. Add the parameter MON_PARAMETRE of the type str with the value “bonjour”

3. Change the test in the definition section to display the value of the parameter.

Note: It is possible to check the syntax of the test before execution by clicking on the button Syntax.

4. Save the test in the repository with the name “Test_A” in the Sandbox directory

7.3 Write a scenario

44 Chapter 7. Get started

Read the ExtensiveAutomation Documentation, Release 20.0

Note: This mini guide assumes that you have followed the chapter Writing a script test.

The following example explains how to create its first scenario with an overload of test variables.

1. Create a Plan type test.

2. Insert test “Test_A” in the scenario. Click on the Insert Child button and select the Test_A test.

3. After insertion, click on the Test_A test and insert the same test again.

4. Save the scenario in the test repository with the name “Scenario_A” in the Sandbox directory.

5. Add the parameter MON_PARAMETRE with the value “goodbye” at the scenario level.

Tip: Do not hesitate to define an alias for the name of the test to make the scenario more readable.

7.3. Write a scenario 45

Read the ExtensiveAutomation Documentation, Release 20.0

7.4 Execute a test

Note: This mini guide assumes that you have followed the chapters Writing a script test and Writing a
scenario.

You can run a test by clicking the Execute button. Open the Test_A and Scenario_A tests and run them.

7.5 Result analysing

Note: This mini guide assumes that you have followed the chapters Writing a script test and Writing a
scenario.

The first analysis window shows the execution of the test “Test_A” and in particular the message “hello”.

The 2nd analysis window shows the execution of the “Scenario_A” test and in particular the “goodbye”
message.

46 Chapter 7. Get started

Read the ExtensiveAutomation Documentation, Release 20.0

This first usage shows how to run a test and a scenario as well as the overloading of the test variables.

7.6 Best practices

Tip: To keep readability in script type tests, do not use try / except. The framework catches all the exceptions
at its level.

Tip:

It is essential to take the time to declare the test steps because they allow

• quickly understand the test without the script.

• to have relevant and understandable test reports.

Tip: To facilitate the maintenance of your tests and make them reusable, you should not have hard value in
your test. It is necessary to systematically put them in test parameters, it is done for.

7.6. Best practices 47

Read the ExtensiveAutomation Documentation, Release 20.0

48 Chapter 7. Get started

CHAPTER8

Tests examples

8.1 Testcase (unit)

This example shows how to use a test case. A test case consists of 4 sections automatically executed by the
test framework as well as associated test parameters.

8.2 Testcase (suite)

A test suite allows you to run several test cases afterwards. The example shows how to loop on a test case
while modifying the incoming data.

49

Read the ExtensiveAutomation Documentation, Release 20.0

It is therefore possible to add as many arguments as necessary to the execute() function and add them
identically to the level of the 4 sections.

Note: It is possible to add a prefix at the test case level using the prefix argument.

8.3 variables

The variables can be used from a test, there are several types. The example below shows how to retrieve a
parameter from its test.

A test parameter can be retrieved at the test level using the input function. The name of the parameter to be
recovered is to be specified.

50 Chapter 8. Tests examples

Read the ExtensiveAutomation Documentation, Release 20.0

8.4 Scenario

A scenario allows you to run several test cases one after the other with result conditions between them. It is
possible to override the test parameters at the scenario level.

8.4. Scenario 51

Read the ExtensiveAutomation Documentation, Release 20.0

8.5 Test campaign

A campaign allows you to run multiple scenarios. It is possible to overload the test parameters at the
campaign settings level.

8.6 Rest API

To write a REST API test, it is recommended:

• to use the reusable test /Snippets/Protocols/02_Send_HTTP_CURL

Example:

The test calls the httpbin.org service in https and calls the ip service to get the client’s actual ip in json.

52 Chapter 8. Tests examples

Read the ExtensiveAutomation Documentation, Release 20.0

The scenario breaks down into several stages:

1. Preparation of the environment: description of the tested environment (address, net-
work port, etc.) The environment is configured in the ENVIRONMENT parameter of the
PREPARE ENVIRONMENT test (Id = 5)

{
"PLATFORM": {

"CLUSTER": [
{ "NODE": {

"COMMON": {
"HOSTNAME": "httpbin"

},
"INSTANCES": {

"HTTP": {
"REST": {

"HTTP_DEST_HOST": "httpbin.org",
"HTTP_DEST_PORT": 443,
"HTTP_DEST_SSL": true,
"HTTP_HOSTNAME": "httpbin.org",
"HTTP_AGENT_SUPPORT": false,
"HTTP_AGENT": null

}
}

}
}

}
]

},
"DATASET": []
}

2. If the environment preparation does not work then the scenario is stopped by calling the
test reusable Snippets/Do/02_Terminate (Id = 16)

3. A REST request is sent and the expected response is described using the reusable test
/Snippets/Protocols/04_Send_JSON (Id = 30). If this step does not work then we cancel
the test (Id = 31)

The response received is verified by the framework and what was described by the tester in
the HTTP_RSP_BODY parameter

origin [!CAPTURE:EXTERNAL_IP:]

The configuration indicates that the response must verify that the `origin` key is present and
save the value in the cache with the ``EXTERNAL_IP`` key

4. The value received in the response is displayed with the reusable test ``Snippets/Cache/02_Log_
→˓Cache`` (Id = 32)

Note: The example presented below is available in full in the test samples /Samples/Web_API/
001_httpbin_rest.tpx.

8.6. Rest API 53

Read the ExtensiveAutomation Documentation, Release 20.0

8.7 SSH controls

To write an SSH test, it is advisable:

• to use the reusable test /Snippets/Protocols/01_Send_SSH

• to describe the target server in JSON (ip, account, password at least)

The test is broken down into several stages:

1. Loading the description (ip, account, password) of the target machine into the cache

2. Calling the /Snippets/Protocols/01_Send_SSH generic test to retrieve the server version The ver-
sion (if found on the screen) is saved in the cache with the SERVER_VERSION key If the version is
not found, the test goes into error.

checking server version
xtctl version
.*Server version: [!CAPTURE:SERVER_VERSION:]\n.*

3. View the version from the cache.

Note: The complete example is available in the test samples /Self Testing/SYSTEM/000_System.tpx.

8.8 Web browsers

To write a web application test, you must:

• deploy a selenium agent on a machine with a firefox, chrome, internet explorer or edge browser

• have access to the source code of the web page from his browser

• have knowledge of xpath

• know the basics of HTML

The recommended approach for writing web tests is as follows:

• identify the number of pages displayed to script (and the possible reuse of these pages)

• identify the different sequence of pages to create the scenarios

• identify user paths

To perform this type of test, you must declare the agent that will be used

54 Chapter 8. Tests examples

Read the ExtensiveAutomation Documentation, Release 20.0

The writing of the tests is done through the assistant. It allows to describe the different stages and generate
the equivalent unit test. The sequence of pages are to be described in the flat tests. The user path is to be
defined in a global test.

The solution also recommends using only xpath to identify HTML elements.

The example below shows how to create a Google Account using a random name and first name.

Example of result:

8.8. Web browsers 55

Read the ExtensiveAutomation Documentation, Release 20.0

Tip: It is possible to use browser development tools to validate xpaths.

Note: The example presented below is available in full in the test samples /Samples/Tests_Gui/Selenium/.

Note: Selenium3 requires at least Java 8 on the client machine.

56 Chapter 8. Tests examples

Read the ExtensiveAutomation Documentation, Release 20.0

Browsers Version Selenium Gecko
Firefox <47 Selenium 2 Non
Firefox > 47 Selenium 3 Oui
IE Selenium 3 N/A
Chrome Selenium 3 N/A

8.9 Android mobile

To write the test of a mobile application, you must:

• Have an Android mobile phone connected in USB on a PC

• Deploy an adb agent on a computer with an android mobile connected to it.

• Have access to the xml description of applications from the agent

Connecting the adb agent on the android mobile requires accepting the RSA key.

8.9. Android mobile 57

Read the ExtensiveAutomation Documentation, Release 20.0

58 Chapter 8. Tests examples

Read the ExtensiveAutomation Documentation, Release 20.0

After login, the agent displays a preview of the screen on the pc, it is possible to browse the interface from
the agent and have the XML elements available in the page.

The writing of the tests is done with the assistant. It allows to describe the different stages and generate the
equivalent unit test. It is essential to rely on the adb agent for have the list of available XML elements and
attributes.

8.9. Android mobile 59

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The complete example is available in test samples /Samples/Tests_Mobiles/03_PlayStore.tux.

Important: Enabling USB debug mode is required on the phone.

60 Chapter 8. Tests examples

CHAPTER9

Tests Snippets

The interest of reusable tests

• factorize the test database

• reuse the tests

• limit scripting to design scenarios

These types of tests are to be used in test plan mode.

9.1 Shared data between tests

9.1.1 Add in the cache a new data

Important: path of the reusable test /Snippets/Cache/01_Set_Cache.tux

This reusable test consists of saving a value in the data cache during the execution of a test.

Parameter(s) to configure:

The DATAS parameter contains the list of values to save with the format:

my comment
[!TO:CACHE:<MA_CLE>:];my value

Example

Save misc data
[!TO:CACHE:EXAMPLE:];hello world

Save server information in the cache
[!TO:CACHE:SERVER_DESCRIPTION:];[!FROM:INPUT:TEST_PURPOSE:]

61

Read the ExtensiveAutomation Documentation, Release 20.0

Note: It is possible to save several values with this test.

9.1.2 Display a value from the cache

Important: path of the reusable test /Snippets/Cache/02_Log_Cache.tux

This reusable test makes it possible to display the value of a key present in the cache during the execution of
the test.

Parameter(s) to configure:

Parameters Description
MESSAGES Contains the list of parameters to log in the test

display cache
[!FROM:CACHE:EXAMPLE:]

log timeout input
[!FROM:INPUT:TIMEOUT:]

Note: It is possible to display multiple values at one time

9.1.3 Reset the cache

Important: path of the reusable test /Snippets/Cache/03_Reset_Cache.tux

This reusable test makes it possible to totally empty the cache. No parameters to configure.

Note: This test can be used when several scenarios are chained together in a global test.

9.1.4 Checking a value in the cache

Important: path of the reusable test /Snippets/Cache/04_Checking_Cache.tux

This reusable test makes it possible to check the value in a key present in the cache.

Parameter(s) to configure:

Parameters Description
CHECKING List of values to check in the cache

Operators available:

62 Chapter 9. Tests Snippets

Read the ExtensiveAutomation Documentation, Release 20.0

Parameters Description
contains Check if the value contains a string
matches Check if the value matches the regular expression
== Check if the value equals
! = Check if the value is different from
> Check if the value is greater than
< Check if the value is less than
> = Check if the value is greater than
<= Check if the value is less than

Check if value contains the test string
[!FROM:CACHE:EXAMPLE:] contains test

Note: It is possible to check multiple values at one time

9.1.5 Delete entry from the cache

Important: path of the reusable test /Snippets/Cache/02_Delete_Cache.tux

This reusable test is used to delete a entry in the cache according to the key.

Parameter(s) to configure:

Parameters Description
MESSAGES List of keys to delete

delete the key EXEMPLE from the cache
[!FROM:CACHE:EXEMPLE:]

Note: It is possible to delete several keys at one time

9.2 Basics actions

9.2.1 Hold on a test

Important: path of the reusable test /Snippets/Do/01_Wait.tux

This reusable test allows you to wait for xx seconds while the test runs.

Parameter(s) to configure:

Parameters Description
DURATION duration in seconds

9.2. Basics actions 63

Read the ExtensiveAutomation Documentation, Release 20.0

9.2.2 Stop a test

Important: path of the reusable test /Snippets/Do/02_Terminate.tux

This reusable test makes it possible to force the stopping of a scenario on error occurences.

Note: It is possible to customize the stop message by setting the variable STOP_TEST_MSG.

9.2.3 Load test environment

Important: path of the reusable test /Snippets/Do/03_Initilize.tux

This reusable test is used to load the test environment data into the cache (ip addresses, server access
account, etc.).

An environment is described with 4 levels:

• environment

• cluster

• node

• instance

An environment may consist of one or more clusters.

{
"PLATFORM": {

"NOM_CLUSTER_1": [..],
"NOM_CLUSTER_2": [..]

}
}

A cluster consists of a list of nodes.

{
"NOM_CLUSTER_1": [

{ "NOM_NOEUD_1": { .. },
{ "NOM_NOEUD_2": { .. }

]
}

A node consists of one or more instances.

{
"NOM_NOEUD_1": {

"COMMON": { ... },
"INSTANCES": {....}

}
}

An instance is made up of several keys / values.

64 Chapter 9. Tests Snippets

Read the ExtensiveAutomation Documentation, Release 20.0

{
"INSTANCES": {

"TYPE_INSTANCE_1": {
"NOM_INSTANCE_1": { ...},
"NOM_INSTANCE_2": { ...}

},
"TYPE_INSTANCE_2": { ... }

}
}

Parameter(s) to configure:

Parameters Description
ENVIRONMENT Link to a shared variable or directly contains JSON.

Example of a test environment containing an http server with an instance of type rest. After loading into the
cache, the REST instance is accessible by using the NODE_HTTP_REST key. All keys in COMMON are automatically
copied to each instance.

{
"PLATFORM": {

"CLUSTER": [
{ "NODE": {

"COMMON": {
"HOSTNAME": "httpbin"

},
"INSTANCES": {

"HTTP": {
"REST": {

"HTTP_DEST_HOST": "httpbin.org",
"HTTP_DEST_PORT": 443,
"HTTP_DEST_SSL": true,
"HTTP_HOSTNAME": "httpbin.org",
"HTTP_AGENT_SUPPORT": false,
"HTTP_AGENT": null

}
}

}
}

}
]

},
"DATASET": []
}

The DATASET key can contain datasets.

9.3 Data Generators

9.3.1 Hash SHA

Important: path of the reusable test /Snippets/Generators/01_Gen_Sha.tux

9.3. Data Generators 65

Read the ExtensiveAutomation Documentation, Release 20.0

This reusable test is used to generate a hash of a value and store it in the cache.

Parameter(s) to configure:

Parameters Description
DATA_IN Hash character string
CACHE_KEY Key name
SHA Type of hash realize (sha1, sha256, sha512)

9.3.2 Hash MD5

Important: path of the reusable test /Snippets/Generators/02_Gen_Md5.tux

This reusable test is used to generate md5 hash and store it in the cache.

Parameter(s) to configure:

Parameters Description
DATA_IN Hash character string
CACHE_KEY Name of the key or the result will be saved in the cache

9.3.3 UUID

Important: path of the reusable test /Snippets/Generators/03_Gen_Uuid.tux

This reusable test is used to generate an uuid and store it in the cache.

Parameter(s) to configure:

Paramètres Description
CACHE_KEY Name of the key to save the result in the cache

9.3.4 BASE64

Important: path of the reusable test /Snippets/Generators/04_Gen_Base64.tux

This reusable test is used to encode or decode a string and store the result in the cache.

Parameter(s) to configure:

Parameters Description
CACHE_KEY Name of the key to save the result in the cache
DECODE Set to True to encode
ENCODE To set to True to decode
URLSAFE Set to True if the result after encoding is to be used in an url
STR_BASE64 Character string to encode / decode

66 Chapter 9. Tests Snippets

Read the ExtensiveAutomation Documentation, Release 20.0

9.4 Networks protocols

9.4.1 SSH

Important: path of the reusable test /Snippets/Protocols/01_Send_SSH.tsx

This reusable test is used to send a sequence of ssh commands. It is used in conjunction with the reusable
test /Snippets/Do/03_Initilize.tux to load an environment into the cache.

Parameter(s) to configure:

Parameters Description
SERVERS List of servers to contact
COMMANDS List of commands to run on the remote machine
TIMEOUT_CONNECT Max time to connect to the remote machine

The COMMANDS parameter is waiting for one or more blocks of 4 lines. Each block must respect the
following formalism:

1. A comment explaining the action, this information is used to initialize the test step

2. The command to execute

3. The string expected on the screen, if the expected value is not found then the step will be in error.
(optional line)

4. empty

Warning: Each block will be executed even if the previous one is in error.

The following example performs the following actions:

1. Send 3 pings on the remote machine whose ip is stored in the DEST_HOST cache

2. Verification of having the message on the screen indicating that the 3 packets have been sent.
Then the mddev value is stored in the cache with the STATS key

3. The second block clears the screen by sending the clear command.

4. Finally the test is waiting to find the prompt on the screen

send a ping
ping -c 3 [!CACHE:SVR:DEST_HOST:]
.*3 packets transmitted, 3 received, 0% packet loss.*mdev = [!CAPTURE:STATS:] ms.*

clear the screen
clear
.*root@.*

Note: It is possible to run the test multiple times by providing a server list.

9.4. Networks protocols 67

Read the ExtensiveAutomation Documentation, Release 20.0

Note: By default, the test waits for a maximum of 20 seconds to find the expected string. This value can be
configured with the TIMEOUT parameter.

Note: By default, the test waits 10 seconds to connect to the remote server. This value can be configured
with the TIMEOUT_CONNECT parameter.

9.4.2 HTTP

Important: path of the reusable test /Snippets/Protocols/02_Send_HTTP_CURL.tsx

This reusable test makes it possible to send an HTTP request by checking the response received.

Parameter (s) to configure the HTTP request to send:

Parameters Description
HTTP_REQ_HOST URL destination
HTTP_REQ_BODY Body of the query
HTTP_REQ_HEADERS List of headers to add
HTTP_REQ_METHOD HTTP method (GET, POST, etc.)

Parameter (s) to configure the expected HTTP response (and which will allow to consider the test as valid):

Parameters Description
HTTP_RSP_BODY Body of the expected answer.
HTTP_RSP_BODY_JSON JSON expected in the answer with json path
HTTP_RSP_BODY_XML XML expected in the answer with xpath
HTTP_RSP_CODE The expected HTTP code. 200 by default
HTTP_RSP_HEADERS List of expected headers
HTTP_RSP_PHRASE The expected HTTP sentence. OK by default
HTTP_RSP_VERSION The expected HTTP version. HTTP / 1. [0|1] default

Note: The use of regular expressions is possible to check or save a value in the body of the answer or in the
headers.

68 Chapter 9. Tests Snippets

Read the ExtensiveAutomation Documentation, Release 20.0

9.5 User Interface

9.5.1 Open application in Windows

Important: path of the reusable test /Snippets/UI/01_Win_OpenApp.tux

This snippet enable to open a application on a Windows or Linux machine. The parameter AGENT_GUI must
be configured with the agent to use.

Parameter(s) to configure:

Parameters Description
APP_PATH Application path to open

9.5.2 Close an application in Windows

Important: path of the reusable test /Snippets/UI/02_Win_CloseApp.tux

This snippet enable to close a application on a Windows or Linux machine. The parameter AGENT_GUI must
be configured with the agent to use.

Parameter(s) to configure:

Parameters Description
APP_NAME Name of the application to close

9.5.3 Open a web browser

Important: path of the reusable test /Snippets/UI/03_OpenBrowser.tux

9.5. User Interface 69

Read the ExtensiveAutomation Documentation, Release 20.0

This snippet enable to open a browser on a Windows or Linux machine. The parameter AGENT_GUI_BROWSER
must be configured with the agent to use.

Parameter(s) to configure:

Parameters Description
LOADING_URL Website url to load

It’s possible to select the browser to user, the following browsers are supported:

• Firefox

• Chrome

• Internet Explorer

• Opera

• Edge

Note: the url must started with http:// or https://

9.5.4 Close a web browser

Important: path of the reusable test /Snippets/UI/03_CloseBrowser.tux

This snippet enable to close a browser on a Windows or linux machine. The parameter AGENT_GUI_BROWSER
must be configured with the agent to use.

70 Chapter 9. Tests Snippets

Read the ExtensiveAutomation Documentation, Release 20.0

9.6 Checks

9.6.1 XML checks

Important: path of the reusable test /Snippets/Verify/01_Check_XML.tux

This snippet enable to check a XML content with xpath.

Parameter(s) to configure:

Parameters Description
XML_STR raw XML to inspect
XML_XPATH xpath
XML_NAMESPACES namespaces definitions

Example of value for the XML_STR parameter:

<NewDataSet>
<Table>

<Country>France</Country>
<City>Le Touquet</City>

</Table>
<Table>
<Country>France</Country>
<City>Agen</City>

</Table>
<Table>

<Country>France</Country>
<City>Cazaux</City>

</Table>
<Table>

<Country>France</Country>
<City>Bordeaux / Merignac</City>

</Table>
<Table>
<Country>France</Country>
<City>Bergerac</City>

</Table>
</NewDataSet>

Example of value for the XML_XPATH parameter.

(//NewDataSet/Table)[1]/City [!CAPTURE:CITY:]

The value will be accessible from the cache with the CITY key.

9.6.2 JSON checks

Important: path of the reusable test /Snippets/Verify/01_Check_JSON.tux

This snippet enable to check JSON content with jsonpath

9.6. Checks 71

Read the ExtensiveAutomation Documentation, Release 20.0

Parameter(s) to configure:

Parameters Description
JSON_STR Json to inspect
JSON_XPATH jsonpath

Example of value for the JSON_STR parameter:

{
"args": {},
"headers": {
"Connection": "close",
"Host": "httpbin.org",
"User-Agent": "ExtensiveTesting"
},
"origin": "190.117.217.129",
"url": "https://httpbin.org/get"
}

Example of value for the JSON_XPATH parameter.

headers.Connection [!CAPTURE:CX:]

The value will be accessible from the cache with the CX key.

72 Chapter 9. Tests Snippets

CHAPTER10

Global variables

Global variables (or shared variables) are sued to describe test environment. Variables are accesible from a
test from the pamarater of the type global or list-global.

10.1 Add/delete a variable

The adding or removing of a variable can be done from the web interface or the REST API. JSON must be
used in variable. There are autommatically availables from tests in properties.

10.2 Describe environment test

The description of a test environment must be respect the following rules. This type of init must be used
with the reusable test /Snippets/Do/03_Initialize.tux

Node declaration SAMPLE_NODE:

{
"COMMON": {

"HOSTNAME": "extensiveautomation"
},
"INSTANCES": {

"SSH": {
"ADMIN": {

"SSH_DEST_HOST": "127.0.0.1",
"SSH_DEST_PORT": 22,
"SSH_DEST_LOGIN": "root",
"SSH_DEST_PWD": "",
"SSH_PRIVATE_KEY": null,
"SSH_PRIVATE_KEY_PATH": null,
"SSH_AGENT_SUPPORT": false,
"SSH_AGENT": {

(continues on next page)

73

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

"type": "ssh",
"name": "agent.ssh01"

}
}

}
}

}

Data test declaration SAMPLE_DATASET_AUTH:

{
"login": "admin",
"password": ""

}

Environment declaration SAMPLE_ENVIRONMENT:

{
"PLATFORM": {

"CLUSTER": [
{ "NODE": "Common:SAMPLE_NODE" }

]
},
"DATASET": [

{ "AUTH": "Common:SAMPLE_DATASET_AUTH" }
]

}

10.3 Import/export variables

It’s possible to export or import in mass the variables from REST API in CSV format

Warning: Variables are encoded in base64.

74 Chapter 10. Global variables

CHAPTER11

Assisted designs

The client contains a automation assistant to create tests without knownledge in development. The assistant
can be used for:

• Use the basic functions of the framework

• Execute system commands (ssh)

• Test applications with a heavy client

• Test web applications

• Run actions on an Android mobile

The test consists of a sequence of actions to perform. The wizard automatically generates a test unit or
test suite. An existing test (script) can be updated from the wizard too.

To add an action in the assistant, you have to

• select the action to perform

• configure it

• save the action

The wizard natively supports the use of the cache. It is therefore possible save or retrieve values from the
cache.

Note: Il est possible de mélanger les différents types d’actions.

75

Read the ExtensiveAutomation Documentation, Release 20.0

Important: The wizard allows to generate tests in automatic mode but it is also possible to add its own
code inside with the USERCODE action.

11.1 Framework Tabulation

The framework tab allows you to use the basic functions of the test framework.

Example of a test done with the assistant:

1. Display the message “hello” in the test

2. Ask the user during the execution his first name and save it in the cache with the firstname key

3. Display the first name in the test log

4. Check from the cache if the first name contains a specific value.

List of available actions:

Note: In red, the essential actions.

LOG MESSAGE Displays an informational message during test execution
LOG WARNING Display a warning message during test execution
SET VALUE Saves a data in the cache
RESET CACHE Blank the cache completely
USERCODE Add custom code in the test
WAIT DURING Wait for xx seconds
CHECK IF VALUE Check if the value contains a specific text
ASK SOMETHING Request a value to the user (interaction mode)

76 Chapter 11. Assisted designs

Read the ExtensiveAutomation Documentation, Release 20.0

11.2 System tab

The system tab allows you to execute commands on a remote server available via SSH.

Example of a test done with the assistant:

1. Opening the ssh session on the remote machine 192.186.1.251

2. Sending the text su -

3. Waits to detect the text Password: on the screen

4. Ask the user for the root password and store it in the cache with the pwd key

5. Send the root password using the value stored in the cache

6. Waiting to detect on the screen the connection prompt

7. Close the SSH connection.

List of available actions:

Note: In red, the essential actions.

OPEN SSH SESSION Open an SSH session
CLOSE SESSION Close the session
CLEAR SCREEN Blank screen
SEND TEXT Send a string of characters
SEND SHORTCUT Sending a keyboard shortcut (to interrupt an action)
CHECKING IF SCREEN Check if the screen contains specific text

11.2. System tab 77

Read the ExtensiveAutomation Documentation, Release 20.0

Note: Using the OPEN SSH SESSION action is mandatory before you can use the others available.

11.3 Tabulation application

The application tab allows you to automate rich applications by allowing:

• to simulate the keyboard

• to simulate the mouse

• search for graphic elements on the screen

• to search for text

Warning: an agent sikulix-server is needed to use the actions.

Example of a test done with the assistant:

1. Send the keyboard shortcut Win + R to open the run window

2. Write the text cmd

3. Send the Enter keyboard shortcut to open a cmd window.

4. Waiting to detect the icon of the cmd window

5. Write the text cls & ver to display the version of Windows

6. Send the Enter keyboard shortcut to validate

7. Send the keyboard shortcut Ctrl + A to select the text in the window

8. Send the keyboard shortcut Ctrl + C to copy the selected text to the clipboard

9. Get the text from the clipboard and save it in the cache

10. Displays the text copied from the cache

11. Write the exit text in the cmd window

12. Send the Enter keyboard shortcut to close the window.

78 Chapter 11. Assisted designs

Read the ExtensiveAutomation Documentation, Release 20.0

List of available actions:

Note: In red, the essential actions.

Mouse control

CLICK ON POSITION Click on the position (x, y)
DOUBLE CLICK ON POSITION Double click on the position (x, y)
RIGHT CLICK ON POSITION Right click on the position (x, y)
MOUSE WHEEL DOWN Turn the mouse wheel down
MOUSE WHEEL UP Turn the mouse wheel up
MOVE TO POSITION Move the cursor to the position (x, y)

Keyboard control

TYPE TEXT Writes text
TYPE PATH Writes text (to use for paths)
TYPE PASSWORD Writes text (to be used to type a password)
GET TEXT FROM CLIPBOARD Retrieves the text present in the clipboard
KEYBOARD SHORTCUT Allows you to type a keyboard shortcut

String control

11.3. Tabulation application 79

Read the ExtensiveAutomation Documentation, Release 20.0

CLICK ON WORD Search a word on the screen and click on it
DOUBLE CLICK ON WORD Search for a word on the screen and double-click on it
RIGHT CLICK ON WORD Search for a word on the screen and right-click on it
WAIT WORD Search a word until it appears
WAIT AND CLICK ON WORD Search a word until it appears and click on it

Image Control

CLICK ON IMAGE Search an image and click on it
DOUBLE CLICK ON IMAGE Search an image and double-click on it
RIGHT CLICK ON IMAGE Search an image and right-click on it
WAIT IMAGE Search an image until you see it on the screen
WAIT AND CLICK ON IMAGE Search an image until you see it on the screen and click on it
HOVER MOUSE ON Find an image and move the mouse cursor over it
DRAG IMAGE AND DROP TO Find an image and drag and drop to position (x, y)

11.4 Browser Tabulation

The browser tab allows you to automate web applications by allowing:

• to control browsers (firefox, internet explorer, chrome, edge)

• to simulate the keyboard

Warning: an agent selenium3-server or selenium2-server is needed to use the actions.

Tip: To click on an HTML element, it is advisable to use systematically the WAIT VISIBLE AND CLICK ON
HTML ELEMENT function.

Example of a test done with the assistant:

1. Get the name from the cache and send it to the HTML element found by the xpath

2. Click on the HTML element found by the xpath

3. Find the HTML element found by the xpath and click on it as soon as it is visible on the screen.

80 Chapter 11. Assisted designs

Read the ExtensiveAutomation Documentation, Release 20.0

Note: It is possible to open multiple browsers in parallel on the same extension to define a new session.
The name of the session is defined by the OPEN BROWSER action. Then use the SWITCH TO SESSION action to
switch sessions.

Available actions:

Note: In red, the essential actions.

Browser Control

OPEN BROWSER Open the browser and load the specified url
CLOSE BROWSER Closes the browser
MAXIMIZE BROWSER Enlarges the browser window

Navigation actions

11.4. Browser Tabulation 81

Read the ExtensiveAutomation Documentation, Release 20.0

REFRESH PAGE Refresh the page
GO BACK Backspace
GO FORWARD Go forward
ACCEPT ALERT Validate the javascript alert
DISMISS ALERT Dismiss the javascript alert
CLOSE CURRENT WINDOW Closes the current window
SWITCH TO NEXT WINDOW Toggle on next window
SWITCH TO FRAME Toggle on the next frame
SWITCH TO SESSION Toggles to another selenium session
SWITCH TO WINDOW Toggle on the next frame

javascript actions

EXECUTE JAVASCRIPT ON HTML ELEMENT Allows you to inject javascript script on an html element

Actions on html elements

WAIT HTML ELEMENT Wait for the appearance of a precise HTML element
WAIT AND CLICK ON HTML ELEMENT Wait for the appearance of a precise HTML element and click

on it
WAIT VISIBLE HTML ELEMENT Wait for an HTML element to be visible to the user
WAIT NOT VISIBLE HTML ELEMENT Wait until an HTML element is not visible to the user
WAIT VISIBLE AND CLICK ON HTML
ELEMENT

Wait for an HTML element to be visible to the user and click
on it

HOVER ON HTML ELEMENT Move the mouse cursor over a specific HTML element
CLICK ON HTML ELEMENT Click on a specific HTML element
DOUBLE CLICK ON HTML ELEMENT Double click on a specific HTML element
CLEAR TEXT ON HTML ELEMENT Empty the text on a specific HTML element
SELECT ITEM BY TEXT Select item according to the text (for combolist or list)
SELECT ITEM BY VALUE Select item according to the value attribute (for combolist or

list)

Text Recovery

GET TEXT ALERT Retrieves the text of an alert message javascript
GET TEXT FROM HTML ELEMENT Retrieves the text an exact html element
GET PAGE TITLE Retrieves the title of the page
GET PAGE URL Get the URL of the page
GET PAGE SOURCE CODE Get the source code page

Keyboard simulation

TYPE KEYBOARD SHORTCUT Sends a keyboard shortcut to a specific HTML element
TYPE TEXT ON HTML ELEMENT Sends text on a specific HTML element

11.5 Android Tabulation

The android tab allows you to automate mobile applications by enabling:

82 Chapter 11. Assisted designs

Read the ExtensiveAutomation Documentation, Release 20.0

• to simulate the keyboard

• to simulate the use of the fingers on the screen

• to control the system and the applications

Warning: an adb agent is needed to use the actions.

Overview of the agent

Example of a test done with the assistant:

1. Wake up the device

2. Unlock the device

3. Click on the HOME button

4. Stop the application

5. Click on the ‘Play Store‘ app to open it

6. Wait for the application to open and search the APPS & GAMES menu

7. Click on the text ENTERTAINMENT

8. Click on the menu MOVIES & TV

11.5. Android Tabulation 83

Read the ExtensiveAutomation Documentation, Release 20.0

9. Wait for 5 seconds

10. Research the image

11. Put the device to sleep.

Available actions:

Note: In red, mandatory actions.

Mobile controls

WAKE UP AND UNLOCK Wake up and unlock the device
REBOOT Restarting the device
SLEEP Paused

Texts

TYPE SHORTCUT Simulates a shortcut
TYPE TEXT ON XML ELEMENT Sends text on a specific element of the interface
GET TEXT FROM XML ELEMENT Retrieves the text of a specific element of the interface

Contrôles des éléments XML

84 Chapter 11. Assisted designs

Read the ExtensiveAutomation Documentation, Release 20.0

CLEAR XML ELEMENT Removes text from a specific element of the interface
CLICK ON XML ELEMENT Click on a specific element of the interface
LONG CLICK ON XML ELE-
MENT

Long-term click on a specific element of the interface

WAIT AND CLICK ON XML
ELEMENT

Wait for the appearance of a specific element of the interface and click
on it

Tap on screen

CLICK TO POSITION Click on the position x, y
DRAG FROM POSITION Drag from position x1, y1 to x2, y2
SWIPE FROM POSITION Swipe from position x1, y1 to x2, y2

11.5. Android Tabulation 85

Read the ExtensiveAutomation Documentation, Release 20.0

86 Chapter 11. Assisted designs

CHAPTER12

Troubleshooting

12.1 Errors codes

Framework error code

Error code Description
ERR_TE_000 Generic error during test execution
ERR_TE_001 Generic error during testcase execution
ERR_TE_500 Generic error during script execution

Steps errors

Error code Description
ERR_STP_001 The step is already started, the function start() is called several time in the test.
ERR_STP_005 The test try to set the result bu the step is not started

Test properties errors

Error code Description
ERR_PRO_004 The parameter name for input function does not exits

12.2 How to fix

12.2.1 Unable to generate the test design of a test

The generation of the description of a test does not works in some cases:

• bad version for adapters and libraries

• syntax error in the test

87

Read the ExtensiveAutomation Documentation, Release 20.0

• the cache is used in the step definition

88 Chapter 12. Troubleshooting

CHAPTER13

Installation

13.1 Server

Please refer to the README in github

13.2 Web Client

Please refer to the README in github

13.3 Qt Client

Please refer to the README in github

13.4 Toolbox

Please refer to the README in github

13.5 Plugins for client

Please refer to the README in github

89

https://github.com/ExtensiveAutomation/extensiveautomation-server/blob/master/README.md
https://github.com/ExtensiveAutomation/extensiveautomation-webclient/blob/master/README.md
https://github.com/ExtensiveAutomation/extensiveautomation-appclient/blob/master/README.md
https://github.com/ExtensiveAutomation/extensiveautomation-apptoolbox/blob/master/README.md
https://github.com/ExtensiveAutomation/extensiveautomation-plugins-client/blob/master/README.md

Read the ExtensiveAutomation Documentation, Release 20.0

90 Chapter 13. Installation

CHAPTER14

Administration

14.1 Start/Stop of the server

If installation has been done with the pip command then the server can be controled with the following
command ./extensiveautomation. This command enables to

• start or stop the server

• check the status

• display the version

Use the following command to start the server ./extensiveautomation --start.

./extensiveautomation --start

Use the following command to stop the server ./extensiveautomation --stop.

./extensiveautomation --stop

Tip:

More details in logs about the start or stop procedure.

tailf [....]/var/logs/output.log
2014-12-06 11:00:54,092 - INFO - Extensive Automation successfully started (in 14 sec.)
...
2014-12-06 10:58:51,810 - INFO - Stopping server
2014-12-06 10:58:51,911 - INFO - Extensive Automation successfully stopped!

91

Read the ExtensiveAutomation Documentation, Release 20.0

14.2 Server status’s

./extensiveautomation --status enable to check the status of the server, 3 states exists:

• starting: the server is starting

• running: the server is running properly

• stopped: the server is stopped

Tip: Don’t forget to check the status of your reverse proxy.

14.3 Server settings

The file settings.ini contains all parameters to configure the server. Parameters are separated in several
sections:

• Boot

• Notifications

• Client_Channel

• Agent_Channel

• WebServices

• TaskManager

• Network

• Paths

• Bin

• Server

• Bind

• Misc

• Database

• Trace

• Supervision

• Users_Session

92 Chapter 14. Administration

CHAPTER15

Projects

The solution is multi-project. It is therefore possible to organize the tests by projects and grant access rights
for users.

Note: The Common project exists by default, it is accessible by all users and can not be deleted.

15.1 Add a project

Only an administrator can add a new project. Creating a project requires specifying its name and can be
done via the web interface or the API

15.2 Delete a project

Only an administrator can remove a project. This action can be done throught the web interface or the web
api.

Note: If the project is associated with a user, deletion is not allowed.

15.3 Link a project to a user

A user can access to several projects. From the profile of a user, you can select all the projects authorized.
It’s possible to define the default one.

93

Read the ExtensiveAutomation Documentation, Release 20.0

94 Chapter 15. Projects

CHAPTER16

Users

The solution is multi-user, 3 users exists by default:

• Admin

• Tester

• Monitor

Note: The default password is password

Note: Don’t forget to disable default accounts in a production environment.

16.1 Add user

Only an administrator can add a new user. The creation of a user requires at least the following parameters
and can be done via the web interface or the API

• username

• password

Note: Email is used by the solution to send test reports and results.

Note: It is possible to configure multiple email addresses for a user by separating them with ;

95

Read the ExtensiveAutomation Documentation, Release 20.0

16.2 Delete a user

Only an administrator can remove a user. This action can be done throught the web interface or the web api.

96 Chapter 16. Users

CHAPTER17

Troubleshooting

17.1 Logs

17.1.1 Server

The server logs are stored on [....]/var/logs/. The logs are set in INFO mode by default. The DEBUG level
can be activated from the settings.ini file.

Note: It is possible to change the level of logs by doing an xtcl reload

17.1.2 Client

The client logs are available in <Program Files> /Extensive Automation Client/Logs/ The logs are set in
INFO mode by default.

The DEBUG level can be activated from the client preferences.

97

Read the ExtensiveAutomation Documentation, Release 20.0

17.1.3 Toolbox

The logs in the toolbox are available in <Program Files>/Extensive Automation Toolbox/Logs/ The logs
are set in INFO mode by default.

The DEBUG level can be activated from the settings.ini file.

Note: A restart of the toolbox is necessary to take into account the change

98 Chapter 17. Troubleshooting

Read the ExtensiveAutomation Documentation, Release 20.0

17.2 Frequently Asked Questions

17.2.1 How to change the connection port of the client?

The destination port can be changed from the client preferences. Or directly from the settings.ini file.

17.2.2 View the server version?

./extensiveautomation --version
Server version: 21.0.0

What if my connection to the server does not work? ~~
~~~~~~

If the connection from the client to the server does not work, an analysis is necessary.

The first thing to do is to connect to the server in SSH and execute the ./extensiveautomation --status
command to check if the server is running.

1. If the server is running then check:

• network connectivity in the client and the server

• a firewall blocking the https flow (443)

2. If the network connectivity is good and the server is working (or not), check the logs. The file is available
in the [....]/var/logs/output.log directory. You must look for messages of type ERROR

How to fix the error “hping3 is not installed”? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~

This error occurs while running a test when the Pinger adapter is used. Indeed requires to have the hping3
system library installed on the server.

You have to retrieve the sources from https://github.com/antirez/hping and compile them:

cd hping-master
yum install libpcap-devel-1.5.3-9.el7.x86_64
ln -s /usr/include/pcap/bpf.h /usr/include/net/bpf.h
./configure
make
make install

17.2. Frequently Asked Questions 99

https://github.com/antirez/hping

Read the ExtensiveAutomation Documentation, Release 20.0

100 Chapter 17. Troubleshooting

CHAPTER18

Tests definitions

The solution is based on different types of tests for:

• enable the construction of advanced tests

• decrease the use of script

18.1 Test Unit

The test unit (tux) allows you to write a test case with several steps. This format is oriented development.

101

Read the ExtensiveAutomation Documentation, Release 20.0

18.2 Test Suite

The test suite (tsx) allows you to write several test cases with several steps. This format is oriented
development.

18.3 Test Plan

The plan test (tpx) allows you to write test cases. The design is realized by nesting the tests abstract, unit
and suite This test format requires no knowledge in development.

18.4 Test Global

The global test (tgx) allows you to write test campaigns. The preparation of the campaigns is carried out
by importing the tests plans.

Note: It is also possible to import other types of tests.

102 Chapter 18. Tests definitions

CHAPTER19

The fundamentals

The test framework provides a framework for standardizing the creation of test cases.

The main features are:

• the support of test cases with steps

• Support extensions to communicate with the system to test or control

• automatic generation of test reports.

19.1 Test case

The creation of a test case in the solution is standardized.

A test case is divided into 4 sections:

• description: description of the different stages of the test

• prepare: preparation of adapters and libraries for communicating with the system to be tested or
piloted

• definition: test flow

• cleanup: cleaning phase

The result of a test case is automatically calculated by the framework when the test is completed according
to the different stages defined.

There are 3 possible results:

• PASS: all the steps of the tests have been successfully executed

• FAILED: at least one step is in error after execution

• UNDEFINED: at least one step of the test has not been executed

103

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The cleanup section is always called, even if there is an error.

19.2 Test steps

A test case is divided into sub-steps.

A step is defined by:

• a summary of the action to be carried out

• the detailed description of the action to be carried out

• the description of the expected result to validate the step.

The definition of the test steps must be done in the description section:

self.step1 = self.addStep(
expected="Logged in",
description="Login throught the rest api",
summary="Login throught the rest api",
enabled=True

)

The result of a step is to be specified in the definition section

Example to set the result to PASS or FAILED

self.step1.setPassed(actual="step executed as expected")

self.step1.setFailed(actual="error to run the step")

Warning: Do not forget to start a step with the function start otherwise it is not possible to put the
result.

Note: Do not forget to specify the result of a step, otherwise it will be considered as UNDEFINED.

Important: A step set to FAILED can not become PASS thereafter in a test.

19.3 Cancellation of a test

It is possible to force the execution of a test case by using the stop function in the description section of
your test.

Test(self).interrupt(err="aborted by tester")

Using the stop feature will stop the test and automatically call the cleanup section of the test case. In this
case, the aborted argument is set to True by the framework to indicate the cancellation of the test.

104 Chapter 19. The fundamentals

Read the ExtensiveAutomation Documentation, Release 20.0

def definition(self):
Test(self).interrupt("bad response received")

def cleanup(self, aborted):
if aborted: self.step1.setFailed(actual="%s" % aborted)

19.4 Adding trace

The framework provides some functions to add messages during the execution of a test.

The following levels are available:

• Example to display a message of type info

Trace(self).info(txt="hello world")

• Example to display a warning message

Trace(self).warning(txt="hello world")

• Example to display an error message

Trace(self).error(txt="hello world")

Note: If an error message is displayed then the result will automatically be set to FAILED.

Note: Messages appear automatically in the basic report.

19.5 Data

19.5.1 Public

A public space is available on the test server. This space makes it possible to provide files that are necessary
during the execution of a test.

The files are stored in the [...]/var/public/ directory on the server.

Warning: This space is common to all projects configured on the server.

19.4. Adding trace 105

Read the ExtensiveAutomation Documentation, Release 20.0

19.5.2 Private

Private vault only exists while running a test. It can save logs generated or recovered during the execution
of the test. These logs are automatically made available to the user in a zip file when the test is completed.
They can be retrieved from the client or from the server API.

The logs are organized by directory:

• TC-TESTCASE directory - # <id_tc>: contains the logs generated by the test case

• ADP directory - # <id_id>: contains the logs generated by the different adapters used during the
test

Example to save the text hello world in a‘ my_logs‘ file from the test case

Private(self).saveFile(destname="my_logs", data="hello world")

Example to add text to an already existing log file

Private(self).appendFile(destname="my_logs", data="hello world2")

Note:

It is also possible to save files from an adapter. They will be automatically stored in a directory
with the name of the adapter.

19.5.3 Cache

The test framework allows caching of data in the key/value form. This function may be necessary to share
data between tests when writing a scenario for example.

106 Chapter 19. The fundamentals

Read the ExtensiveAutomation Documentation, Release 20.0

Example to save a value in the cache

Cache().set(name="my_data", data="hello")

Read a value from the cache

my_data= Cache().get(name="my_data")
Trace(self).warning(my_data)

Example to capture a data with a regular expression and with record in the cache

my_data="March, 25 2017 07:38:58 AM"

Cache().capture(data=my_data, regexp=".* (?P<TIME>\d{2}:\d{2}:\d{2}) .*")

Trace(self).info(txt=Cache().get(name="TIME"))

It is also possible to rely on a custom parameter to supply the regular expression.

.*session_id=[!CAPTURE:SESSIONID:];expires.*

or in greedy mode

.*session_id=[!CAPTURE:SESSIONID:.*?];.*

Important: The cache exists only during the execution of a test.

19.6 Put on hold

This function allows you to pause while running a test.

Example of holding for 10 seconds:

Time(self).wait(timeout=10)

Standby example until the current date and time match the specified date:

Time(self).waitUntil(dt='2016-09-12 02:00:00', fmt='%Y-%m-%d %H:%M:%S', delta=0)

19.7 Interaction with the tester

The framework makes it possible to write semi-automatic tests, ie in interaction mode. This function can be
interesting for a test in interactive mode (eg configuration of a device)

19.6. Put on hold 107

Read the ExtensiveAutomation Documentation, Release 20.0

Example asking the name of the person:

user_rsp = Interact(self).interact(ask="Your name?", timeout=30.0, default=None)

From the client, the Interact tab automatically appears to answer the question asked during the execution
of the test. This window is available from the analysis window.

Note: If no response is provided within the interval, it is possible to provide a default value with the default
argument.

19.8 Parameters of a test

19.8.1 Inputs

Input parameters are used to add variables to a test. They are configurable from the client.

There are several types of parameters:

The variables are accessible from a test with the input (...) function

input('DEBUG')

The text parameter

The text type is used to construct parameters that use other parameters or the cache. It is therefore possible
to use keywords that will be interpreted by the test framework at the time of execution.

List of available keywords:

Keywords Description
[! INPUT::] Retrieves the value of a parameter present in the test
[! CACHE::] Retrieves a value present in the cache

Note: The name of a parameter is unique and must be capitalized.

108 Chapter 19. The fundamentals

Read the ExtensiveAutomation Documentation, Release 20.0

19.8.2 The agents

The list of agents can be accessed from a test using the () key mode.

self.ADP_REST= SutAdapters.REST.Client(
parent=self,
destinationIp=input('HOST'),
destinationPort=input('PORT'),
debug=input('DEBUG'),
sslSupport=input('USE_SSL'),
agentSupport=input('SUPPORT_AGENT'),
agent=input('AGENT_SOCKET')
)

Define the agent parameter with json like that {‘name’: ‘agent1’, ‘type’: ‘socket’}

19.8.3 Import / export settings

The test parameters can be exported to a dedicated testconfig (tcx) file type. It is therefore possible to
prepare the parameters without having the test.

19.8. Parameters of a test 109

Read the ExtensiveAutomation Documentation, Release 20.0

It is possible to import a configuration file into a test. The import will overwrite all the parameters if the
name is the same.

110 Chapter 19. The fundamentals

CHAPTER20

The tracability

20.1 The events

The execution of a test is divided into events, all of these events are stored and can be viewed afterwards.
An event can represent:

• an action performed by the test framework

• an action performed by the test

• a data item received by the system to be tested or checked.

• data to send to the system to test or control.

Event execution makes it possible to have robust tests thanks to the definition of observation intervals. The
approach is to write the tests with the following formalism:

• I perform an action in my test.

• During a given interval, I look and compare all the events received with an expected.

• I decide on the next action

– after receiving the event I was waiting for

– or when the observation interval is over.

During the execution of a test, the framework captures all the events generated by the tested or piloted
system. The events are then converted and stored in a message called template.

A template is split into one or more layers. A layer is defined by a set of key/value. The value of a layer
can be another layer too.

111

Read the ExtensiveAutomation Documentation, Release 20.0

20.1.1 Creating a template

Creating a template can be done using the TestTemplates test framework.

tpl = TestTemplates.TemplateMessage ()
layer = TestTemplates.TemplateLayer (name = 'response')
layer.addKey (name = 'code', data = '200')
layer.addKey (name = 'msg', data = 'hello world')
tpl.addLayer (layer = layer)

This template indicates that the event should contain:

• a layer called response and containing the key‘ code‘ and msg

• the key code must be strictly equal to the value 500

• the msg key must be strictly equal to the text hello world.

Example of an expected message visible from the graphical client:

112 Chapter 20. The tracability

Read the ExtensiveAutomation Documentation, Release 20.0

20.1.2 The operators

Operators are available to facilitate comparison of the models received.

Sample template using comparison operators:

tpl = TestTemplates.TemplateMessage()
layer = TestTemplates.TemplateLayer(name='response')
layer.addKey(name='code', data=TestOperators.LowerThan(x=500)))
layer.addKey(name='msg', data=TestOperators.Contains(x="hello"))
tpl.addLayer(layer=layer)

This template indicates that the event should contain:

• a layer called response and containing the key‘ code‘ and msg

• the code key must be less than 500

• the msg key must contain the text hello.

20.1.3 Visualization

The client can graphically display the comparison made by the framework.

20.1. The events 113

Read the ExtensiveAutomation Documentation, Release 20.0

Definition of the color code:

Green Perfect match between the value received and expected
Red The value received does not correspond to the expected value
Yellow The expected value has not been verified

20.2 Test reports

After each run of a test, the framework automatically generates the associated test reports.

There are 2 type reports:

• An advanced report

• A basic report (accessible by default from the graphical client)

The reports are accessible from the client, the web interface or from the API.

Note: Reports can be exported in html, csv, xml and pdf format.

20.2.1 Advanced report

The advanced report displays information such as:

• the execution time of each test case

• the complete description of the test steps.

• performance statistics.

• the test parameters.

114 Chapter 20. The tracability

Read the ExtensiveAutomation Documentation, Release 20.0

It is possible to display variables in the test report by prefixing the variables:

• SUT_ Variables describing the version of the system to be tested or piloted

• DATA_ Variables describing specific data

• USER_ User variables

This feature can be useful for increasing the level of traceability in reports.

20.2. Test reports 115

Read the ExtensiveAutomation Documentation, Release 20.0

20.2.2 Basic report

The basic report summarizes the result of all test cases and reports.

116 Chapter 20. The tracability

Read the ExtensiveAutomation Documentation, Release 20.0

Color code:

Green The test case is valid
Red The test case is in error
Orange The result of the test case is not determined
Gray The test case was not executed

Tip: You must click on the test cases to display the steps.

20.2. Test reports 117

Read the ExtensiveAutomation Documentation, Release 20.0

Note: The messages displayed by the test with the Trace (self) .info () function are available in the
report by clicking on the [logs details] link.

Errors are also displayed by clicking on the [errors details] link.

20.3 The logs

The framework allows you to save logs while running a test and make them available quickly to the uses. All
additional logs are zipped and accessible from the client or the API.

Note: For more details, read the chapter The fundamentals >> Data.

118 Chapter 20. The tracability

CHAPTER21

Interoperability

21.1 Adapters

The adapters allow communication with the system to be tested or piloted. The solution embeds several default adapters in different domains:

• network protocol support

• application level protocol support

• communication with databases

• systems interaction

• interaction with graphic interfaces

• telecom protocol support

Adapters have two modes of use:

• a direct mode: communication is done directly from the test server to the system to be controlled.

• an agent mode: the communication with the system to be controlled is done through an agent
communicating with the test server.

Note: The Verbose mode is enabled by default on all adapters. This mode can be disabled to reduce the
number of events during a test.

Note: The Debug mode is not enabled by default. It can be activated in case of problem.

Note: Tests axamples are provided in each plugins

List of adapters available by default:

119

Read the ExtensiveAutomation Documentation, Release 20.0

Adapters Agents Descriptions
CLI ssh Sniffer to send and receive ARP packets
WEB curl Sniffer to send and receive ICMP packets
GUI selenium2-server or selenium3-server or adb or sikulixserver | UI interactions

Others adapters but not provided by default:

21.1.1 Network Protocols

Adapters Agents Descriptions
ARP socket Sniffer to send and receive ARP packets
ICMP socket Sniffer to send and receive ICMP packets
Ethernet socket Sniffer for sending and receiving Ethernet frames
IP socket Sniffer for sending and receiving IPv4 packets
Pinger not supported Machine life tests via ICMP, TCP or URL
UDP / TCP socket Sniffer and UDP client and TCP
NTP socket Client to request an NTP server
DNS not supported Resolver Customer
SNMP socket Receiving SNMPv2 Alarms

21.1.2 Network Protocols Applications

21.1.3 System commands

Adapters Agents Descriptions
Dig Customer dig
Curl Customer curl
Nmap Nmap client
Ncat Customer ncat
Openssl Openssl client

21.1.4 User Interfaces

Adapters Agents Descriptions
Adb adb Integration with the Android Gateway
Selenium selenium2-server or selenium3-server Integration with the Selenium project
Sikuli sikulix-server Integration with the SikuliX project

21.1.5 Data base

Adapters Agents Descriptions
Microsoft SQL database Communication with a base of type Microsoft SQL
MySQL database Communication with a MySQL/MariaDB database
PostgreSQL database Communication with a PostgreSQL database

120 Chapter 21. Interoperability

Read the ExtensiveAutomation Documentation, Release 20.0

21.1.6 System controls

21.1.7 Telecom Protocols

Adapters Agents Descriptions
SMS Gateway gateway-sms Receive or send SMS using an Android smartphone
SIP socket SIP Phone
RTP socket Module for sending and receiving audio and video streams

21.1.8 Encryption

AES Encryption or decryption support
Blowfish Encryption or decryption support
OpenSSL Execute SSL command
RC4 Encryption or decryption support
XOR Encryption or decryption support
RSA RSA Key Generator

21.1.9 Codecs

Base64 Encode or decode in base64 format
Excel Excel file reading
G711A Encode or decode the audio codec
G711U Encode or decode the audio codec
JSON Encode or decode text in JSON format
XML Encode or decode text in XML format

21.1.10 Compression

GZIP Compression or decompression in GZIP format

21.1.11 Hashing

Checksum Checksum Generator
HMAC Creating a hash md5, sha1 and sha256
MD5 Creating a md5 hash
SHA Creating a hash sha1, sha256 and sha512
CRC32 Checksum Generator

21.1.12 Identifiant

SessionID Session Builder ID
UUIDS UUID Generator (Universally Unique IDentifier)

21.1. Adapters 121

Read the ExtensiveAutomation Documentation, Release 20.0

21.1.13 Média

ChartsJS Visible graph generator in test reports
DialTones Tone generator
Image Manipulation of images
Noise Noise generator
SDP Decodes or encodes SDP messages
WavContainer Creating audio file type WAV
Waves Simple wave generator

21.1.14 Date

Today Retrieves today’s date

21.1.15 Security

Basic Decode or encode the authorization
Digest Decode or encode the authorization
Hmac Decode or encode the authorization
Oauth Decode or encode the authorization
Wsse Decode or encode the authorization
Certificate Decodes certificates in a readable format
JWT Decode or encode tokens

21.1.16 Time

Timestamp Generate a timestamp or convert to a readable value

21.1.17 Units

Bytes Convert fromtes to readable

21.2 Third party tools

Git Clone / commit file on remote repository
Jira Ticket creation
HP ALM QC Test run, ticket creation. Version 12 minimum
ExtensiveAutomation Test execution, variable creation
Jenkins Running tests before or after a build
VSphere VM creation or supression on VMware

122 Chapter 21. Interoperability

Read the ExtensiveAutomation Documentation, Release 20.0

Note:

The solution has a REST API, it can be driven also by these tools.

• Jenkins Plugin: https://wiki.jenkins.io/display/JENKINS/ExtensiveTesting+Plugin

21.2.1 HP ALM

This plugin allows you to export test results in the HP ALM tool. It can be used from an etst to export results
without user intervention.

Example of use:

::

HP ALM ——> Call REST API —–> AND ^ | | v | Execution of the requested test | v + <——–
Push the result ——–+

21.2.2 Jenkins

This plugin allows to launch a build from the Extensive solution.

21.2.3 VSphere

This plugin allows you to control a VMware virtual environment. It can be used for:

• create virtual machines automatically

• remove machines

21.2.4 ExtensiveAutomation

This plugin makes it possible to make a link between several environment (dev, integration, qualification)
by allowing to run tests from one environment to another.

21.2.5 Jira

This plugin makes it possible to create tickets following the execution of a test in the tool Jira.

21.2.6 Git

This plugin allows you to recover or push files from a source repository. It can be used as a prerequisite for
a test.

21.2. Third party tools 123

https://wiki.jenkins.io/display/JENKINS/ExtensiveTesting+Plugin

Read the ExtensiveAutomation Documentation, Release 20.0

21.3 Agents

Agents are available from the toolbox. They are to be used together with the adapters

• to communicate with the system to test or control when it is not accessible live by the test server
(ex: a web page)

• run a test on several different environments.

Note: The dummy agent is to be used as a basis for developing a new agent.

21.3.1 Network Protocols

socket Lets you start TCP / UDP sockets
ftp Connect to an FTP server(s)
database Queries databases (MySQL, Microsoft SQL and PostgreSQL)
ssh Connect to machines via SSH or SFTP

21.3.2 Systems

command Execute system commands on Windows or Linux
file Allows you to recover files on Windows or Linux systems

21.3.3 Third party tools

sikulix-server Interactions with heavy applications
selenium3-server Allows you to control the latest generation web browsers
selenium2-server Allows you to control web browsers
soapui Allows you to run SoapUI tests
adb Allows you to control Android smartphones
gateway-sms Send or receive SMS

Note: Using the Selenium3-Server agent requires at least Java 8 on the machine.

124 Chapter 21. Interoperability

CHAPTER22

Test engine

22.1 The scheduler

22.1.1 Programming of performances

The scheduler present in the server makes it possible to program the execution of the tests in several ways.

• Run the test once in x_seconds or date_time

• Run the test several times at date_time.

• Run the test at each start time at finish time

• Run the test every hour at a specific hour

• Run the test every day at a precise hour

• Run the test once a week the day of the week at a specific hour

125

Read the ExtensiveAutomation Documentation, Release 20.0

Note: A recursive task will be automatically restarted by the server after a reboot.

22.1.2 Task Management

The following actions are available to manage tasks scheduled by users:

• cancel one or more tasks

• stop one or more tasks

• reprogram one or more tasks

• view the history of the performances.

All of its actions can be done from the heavy client or from the API.

126 Chapter 22. Test engine

Read the ExtensiveAutomation Documentation, Release 20.0

22.2 Parallelized executions

It is possible to run multiple tests in parallel using the Grouped function This function is available from the
heavy client or from the API.

There are 2 options of executions:

• run tests one after the other (no link)

• or parallel execution

22.2. Parallelized executions 127

Read the ExtensiveAutomation Documentation, Release 20.0

Note: From the API, use the function /rest/tests/schedule/group.

{
"test": [

"Common:/Samples/Tests_Unit/02_A.tux",
"Common:/Samples/Tests_Unit/03_B.tux"

],
"postpone-at": [],
"parallel-mode": False,
"postpone-mode": False
}

Important: There is no guarantee that the tests will start at the same time with this mode of execution.

22.3 Synchronized executions

22.3.1 Sharing adapters

The ‘‘ shared mode‘‘ feature allows you to reuse the same adapter in several test cases. This mode is to be
used in a scenario (test plan) or a test suite with several test cases.

Here is an example of possible use:

• the scenario tests an application

• in the background, the scenario also checks the logs generated by the application

• It is therefore possible to influence the result of the test based on what is found in the logs.

128 Chapter 22. Test engine

Read the ExtensiveAutomation Documentation, Release 20.0

To enable shared mode, set the ‘‘ shared‘‘ parameter to True and give the adapter a name:

self.ADP_EXAMPLE = SutAdapters.Dummy.Adapter(
parent=self,
debug=False,
name="MY_ADAPTER",
shared=True

)

Note: It is important to give a name to its adapter because it makes finding it easier. If no name is given,
the framework configures the adapter with a random name.

After initialization of the adapter it is possible to recover an adapter from another test case by searching for
it by name.

self.ADP_EXAMPLE = self.findAdapter(name="MY_ADAPTER")
if self.ADP_EXAMPLE is None: Test(self).interrupt("unable to find the adapter")

22.3.2 Sharing data

Since the cache is unique when a test (no matter the type) is performed, it is possible to exchange data
between several test cases.

A first test can record data in the cache and a 2nd test can retrieve the value stored by the 1st test.

22.3.3 Synchronization

Synchronized execution of several test cases is possible using a testplan. This scenario should contain:

• an observer test case

• one or more test cases running actions in the background

The observer test must be used to make the connection between the different adapters.

Important: The use of adapters in shared mode is mandatory.

Note: An example is available in the /Samples/Tests_Non_Sequential test samples.

22.4 Distributed executions

The solution allows for distributed executions using distributed agents across the networks.

22.4. Distributed executions 129

Read the ExtensiveAutomation Documentation, Release 20.0

130 Chapter 22. Test engine

CHAPTER23

Advanced examples

23.1 SSH adapter

The SSH adapter allows you to connect to remote servers using the SSH protocol.

The configuration of the adapter consists of indicating at least:

• the ip address of the remote server

• the remote server port (default 22)

• the user account

The adapter supports the following features:

• authentication by username and password

• key exchange authentication

Example of configuring the adapter in the prepared section of the test.

self.ADP_SSH = SutAdapters.SSH.Client(
parent=self,
login=input('LOGIN'),
password=input('PWD'),
destIp=input('DEST_IP'),
destPort=input('DEST_PORT'),
debug=input('DEBUG'),
agentSupport=input('SUPPORT_AGENT')

)

Example to connect, to authenticate on a remote server and to disconnect:

connected = self.ADP_SSH.doConnect(
timeout=input('TIMEOUT'),
prompt='~]#'

)

(continues on next page)

131

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

if not connected: self.abort("ssh connect failed")
self.info("SSH connection OK")

disconnected = self.ADP.doDisconnect(timeout=input('TIMEOUT'))
if not disconnected: self.abort("disconnect failed")
self.info("SSH disconnection OK")

Example to send a command on a remote machine:

rsp = self.ADP_SSH. doSendCommand(
command='date',
timeout=input('TIMEOUT'),
expectedData=None,
prompt='~]#'

)
if rsp is None: self.abort("run command failed")
self.warning(rsp)

Warning: SSH replies can be split into several events (this depends on the network). We must be careful
when waiting for a specific response, the use of a buffer may be necessary in this case.

Note: Examples are available in the /Samples/Tests_Adapters/05_SSH.tsx sample.

23.2 HTTP adapter

The HTTP adapter is used to send requests and inspect associated responses to a web server.

The configuration of the adapter consists of indicating at least:

• the ip address of the remote server

• the remote server port (default 80)

The adapter supports the following features:

• encryption tls of the communication

• the use of socks4, 5 proxy and http

• digest or basic authentication

• reassembly of responses chunked

Example of configuring the adapter in the prepared section of the test.

self.ADP_HTTP = SutAdapters.HTTP.Client(
parent=self,
debug=input('TRACE'),
destinationIp=input('DST_IP'),
destinationPort=input('DST_PORT'),
sslSupport = input('SSL_SUPPORT'),
agent=input('AGENT_SOCKET'),

(continues on next page)

132 Chapter 23. Advanced examples

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

agentSupport=input('SUPPORT_AGENT')
)

Example to send a GET type query and a response with the 200 code.

rsp = self.ADP_HTTP.GET(
uri="/",
host=input('HOST'),
timeout=input('TIMEOUT'),
codeExpected=200

)
if rsp is None:
self.step1.setFailed(actual="bad response received")

else:
self.step1.setPassed(actual="http response OK")

Example to send a GET type query and wait for a response that meets the following criteria:

• the version must end with 1.1

• the code must not contain the value 200

• the sentence must not contain the text Testing

• the body of the answer must contain the text google

• the response must contain a header containing the text server, regardless of the value

headersExpected = { TestOperators.Contains(needle='server'): TestOperators.Any() }

rsp = self.ADP_HTTP.GET(
uri="/",
host=input('HOST'),
timeout=input('TIMEOUT'),
versionExpected=TestOperators.Endswith(needle='1.1') ,
codeExpected=TestOperators.NotContains(needle='200') ,
phraseExpected=TestOperators.NotContains(needle='Testing') ,
bodyExpected=TestOperators.Contains(needle='google'))
headersExpected=headersExpected
)

if rsp is None:
self.step1.setFailed(actual="bad response received")

else:
self.step1.setPassed(actual="http response OK")

23.3 Telnet adapter

The Telnet adapter is used to connect to machines with a telnet interface.

The configuration of the adapter consists of indicating at least:

• the ip address of the remote server

• the remote server port (default 23)

Example of configuring the adapter in the prepared section of the test.

23.3. Telnet adapter 133

Read the ExtensiveAutomation Documentation, Release 20.0

self.ADP_TELNET = SutAdapters.Telnet.Client(
parent=self,
destIp=input('TELNET_IP'),
destPort=input('TELNET_PORT'),
debug=input('DEBUG'),
agentSupport=input('SUPPORT_AGENT')
)

Example to connect or disconnect from the remote server

self.ADP_TELNET.connect()
connected = self.ADP_TELNET.isConnected(timeout=input('TIMEOUT'))
if not connected: Test(self).interrupt('unable to connect')

self.ADP_TELNET.disconnect()
disconnected = self.ADP_TELNET.isDisconnected(timeout=input('TIMEOUT'))
if not disconnected: Test(self).interrupt('unable to disconnect')

Example showing how to wait for the receipt of a particular text.

rsp = self.ADP_TELNET.hasReceivedData(
timeout=input('TIMEOUT'),
dataExpected=TestOperators.Contains(needle='Password:'))
)

if rsp is None: Test(self).interrupt('Password prompt not found')

Example to send data to the remote server

tpl = self.ADP_TELNET.sendData(dataRaw="exemple")

search for a particular text. To guard against this problem, we must add an intermediary buffer, there is a
complete example with the Catalyst adapter.

Note: An example is available in the test samples /Samples/Tests_Adapters/12_Telnet.tsx.

23.4 MySQL adapter

The MySQL adapter allows you to connect to a remote database.

The configuration of the adapter consists of indicating at least:

• the ip address of the remote server

• the remote server port (by default 3306)

• the user name

• the associated password

Example of configuring the adapter in the prepared section of the test.

self.ADP_MYSQL = SutAdapters.Database.MySQL(
parent=self,
host=input('HOST_DST'),
user=input('MYSQL_LOGIN'),

(continues on next page)

134 Chapter 23. Advanced examples

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

password=input('MYSQL_PWD'),
debug=input('DEBUG'),
verbose=input('VERBOSE'),
agent=input('AGENT_DB'),
agentSupport=input('SUPPORT_AGENT')
)

Example to connect or disconnect from the remote server:

self.ADP_MYSQL.connect(dbName=input('MYSQL_DB'), timeout=input('TIMEOUT'))

self.ADP_MYSQL.disconnect()

Example to execute an SQL query in the database:

query = 'SELECT id FROM `%s-users` WHERE login="admin"' % input('TABLE_PREFIX')
self.ADP_MYSQL.query(query=query)
rsp = self.ADP_MYSQL.hasReceivedRow(timeout=input('TIMEOUT'))

Note: An example is available in the /Samples/Tests_Adapters/15_Database.tsx test samples.

23.5 SNMP adapter

The SNMP adapter allows you to receive SNMP v1 or v2 alarms.

The configuration of the adapter consists of indicating at least:

• the listening address

• the listening port

Example of configuring the adapter in the prepared section of the test.

self.ADP_SNMP = SutAdapters.SNMP.TrapReceiver(
parent=self,
bindIp=get('SRC_IP'),
bindPort=get('SRC_PORT'),
debug=get('DEBUG'),
agent=input('AGENT_SOCKET'),
agentSupport=input('SUPPORT_AGENT')
)

Example to start listening to the server

self.ADP_SNMP.startListening()
listening = self.ADP_SNMP.udp().isListening(timeout=get('TIMEOUT'))
if not listening: Test(self).interrupt('UDP not listening')

Example to wait for the reception of an alarm:

trap = self.UDP_ADP.hasReceivedTrap(
timeout=input('TIMEOUT'),
version=SutAdapters.SNMP.TRAP_V1,

(continues on next page)

23.5. SNMP adapter 135

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

community=None,
agentAddr=None,
enterprise=None,
genericTrap=None,
specificTrap="17",
uptime=None,
requestId=None,
errorStatus=None,
errorIndex=None

)
if trap is None: Test(self).interrupt("trap expected not received")

Note: An example is available in the /Samples/Tests_Adapters/18_SNMP.tsx test samples.

23.6 FTP adapter (s)

The FTP adapter allows you to connect to remote servers and supports the following functions:

• TLS connection

• Download or recover files or directories

• Add / delete and rename files or directories

• List the contents of a directory

• Detect the appearance of a file or directory with the support of regular expressions.

The configuration of the adapter consists of indicating at least:

• the ip address of the remote server

• the username to login

• the password

Example of configuring the adapter in the prepared section of the test.

self.ADP_FTP = SutAdapters.FTP.Client(
parent=self,
debug=input('DEBUG'),
destinationIp=input('FTP_HOST'),
user=input('FTP_USER'),
password=input('FTP_PWD') ,
agentSupport=input('SUPPORT_AGENT')
)

Example to connect or disconnect from the FTP server:

self.ADP_FTP.connect(passiveMode=True)
if self.ADP_FTP.isConnected(timeout=input('TIMEOUT')) is None:

Test(self).interrupt("unable to connect")

self.ADP_FTP.login()
if self.ADP_FTP.isLogged(timeout=input('TIMEOUT')) is None:

(continues on next page)

136 Chapter 23. Advanced examples

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

Test(self).interrupt("unable to login")
Trace(self).info("SFTP connection OK")

self.ADP_FTP.disconnect()
if self.ADP_FTP.isDisconnected(timeout=input('TIMEOUT')) is not None:

Test(self).interrupt("disconnect failed")
Trace(self).info("FTP disconnection OK")

Example to list the contents of a directory:

self.ADP_FTP.listingFolder()
if self.ADP_FTP.hasFolderListing(timeout=input('TIMEOUT')) is not None:

Trace(self).error("unable to get listing folder")

Example to detect a file in a directory with a regular expression:

self.ADP_FTP.waitForFile(
path='/var/log/',
filename='^messages-.*$',
timeout=input('TIMEOUT')

)

found = self.ADP_FTP.hasDetectedFile(
path=None,
filename=None,
timeout=input('TIMEOUT')

)
if found is None: Trace(self).error("file not found")

Note: An example is available in the test samples /Samples/Tests_Adapters/21_Ftp.tsx.

23.7 SFTP adapter

The SFTP adapter allows you to connect to servers with an SSH interface. The following features are sup-
ported:

• Download or recover files or directories

• Add / delete and rename files or directories

• List the contents of a directory

• Detect the appearance of a file or directory with the support of regular expressions.

The configuration of the adapter consists of indicating at least:

• the ip address of the remote server

• the username to login

• the password

Example of configuring the adapter in the prepared section of the test.

23.7. SFTP adapter 137

Read the ExtensiveAutomation Documentation, Release 20.0

self.ADP_SFTP = SutAdapters.SFTP.Client(
parent=self,
login=input('LOGIN'),
password=input('PWD'),
destIp=input('DEST_IP'),
destPort=input('DEST_PORT'),
debug=input('DEBUG'),
agentSupport=input('SUPPORT_AGENT')

)

Example to connect and disconnect from the server:

connected = self.ADP_SFTP.doConnect(timeout=input('TIMEOUT'))
if not connected: Test(self).interrupt("sftp connect failed")
self.info("SFTP connection OK")

disconnected = self.ADP_SFTP.doDisconnect(timeout=input('TIMEOUT'))
if not disconnected: Test(self).interrupt("disconnect failed")
self.info("SFTP disconnection OK")

Example to list the contents of a directory:

self.ADP_SFTP.listingFolder(
path="/var/log/",
extended=False
)

rsp = self.ADP_SFTP.hasFolderListing(timeout=input('TIMEOUT'))
if rsp is None: Trace(self).error("unable to get listing folder")
self.warning(rsp.get("SFTP", "result"))

Example to detect a file in a directory with a regular expression:

self.ADP_SFTP.waitForFile(
path='/var/log/',
filename='^messages-.*$',
timeout=input('TIMEOUT')

)

found = self.ADP_SFTP.hasDetectedFile(
path=None,
filename=None,
timeout=input('TIMEOUT')

)
if found is None: Trace(self).error("file not found")

Note: An example is available in the test samples /Samples/Tests_Adapters/22_Sftp.tsx.

23.8 ChartJS librairies

The ChartJs adapter, based on the javascript library of the same name, allows you to generate graphics that
can be integrated into an html page. The main interest of this library is to be able to integrate graphs in the

138 Chapter 23. Advanced examples

Read the ExtensiveAutomation Documentation, Release 20.0

test report.

Example configuration of the library in the prepared section of the test.

self.LIB_CHART = SutLibraries.Media.ChartJS(parent=self, name=None, debug=False)

Example to generate a bar chart and integrate it into the report

génération de données
labelsAxes = ["Red", "Blue", "Yellow", "Green", "Purple", "Orange"]
dataA = [12, 19, 3, 5, 2, 3]
dataB = [22, 49, 3, 5, 23, 3]
legendDatas = ["tets", "test"]
backgroundColor = '#4BC0C0'
borderColor = '#36A2EB'

génération du grahique
myChart = self.LIB_CHART.barChart(

labelsAxes=labelsAxes,
datas=[dataA, dataB],
legendDatas=legendDatas,
width=400,
height=300,
backgroundColors=[borderColor, backgroundColor],
borderColors=[borderColor, backgroundColor],
chartTitle="test"

)

ajout du graphique dans le résultat de l'étape
self.step1.setPassed(actual="chart", chart=myChart)

The chart is automatically inserted into the advanced report.

23.8. ChartJS librairies 139

Read the ExtensiveAutomation Documentation, Release 20.0

23.9 “Text” parameter

The text parameter is used to construct values calling other variables.

For example, consider a test containing the following 2 variables:

• DEST_IP with the value 192.168.1.1

• DEST_PORT with the value 8080

The text type will allow us to build a 3rd variable

• DEST_URL with the value

The keyword [! INPUT: <VARIABLE_NAME:] allows calling another incoming variable. The framework will
replace at the time of execution of the test the various keywords with the associated value. We will obtain
the value https://192.168.1.1:8080/welcome for the variable DEST_URL.

To go further, it is also possible to add a value available from the cache. Assuming that the value “welcome?
User = hello” is in the cache and accessible via the key “url_params”. It is possible to integrate in the
parameter as below

Example of result after execution:

140 Chapter 23. Advanced examples

https://192.168.1.1:8080/welcome

Read the ExtensiveAutomation Documentation, Release 20.0

23.10 “Json” parameter

todo

23.11 “alias” parameter

The alias parameter can be used to define a new name for an already existing parameter. This mechanism
can be used in plan test to avoid overloading all parameters with the same name.

Example of use

1. Before execution

Scenario (TIMEOUT_A(int)=2 seconds)
---> Test 1 (TIMEOUT_A(int)=10 seconds)
---> Test 2 (TIMEOUT_A(int)=30 seconds)
---> Test 3 (TIMEOUT_A(int)=20 seconds)

2. After running the test

Scenario (TIMEOUT_A(int)=2 seconds)
---> Test 1 (TIMEOUT_A(int)=2 seconds)
---> Test 2 (TIMEOUT_A(int)=2 seconds)
---> Test 3 (TIMEOUT_A(int)=2 seconds)

When executing the above scenario, test 1, 2 and 3 are automatically set to 2 seconds for the TIMEOUT_A
parameter. This is the behavior provided by the test framework.

How to do if you want the test 2 to keep the value 30 seconds against the test 1 and 2 inherit the value
of the scenario?

You have to use an alias parameter, they are not overloaded by the framework.

1. Before execution

Scenario (TIMEOUT_A(int)=2 seconds et TIMEOUT_B(int)=30 seconds)
---> Test 1 (TIMEOUT_A(int)=10 seconds)
---> Test 2 (TIMEOUT_A(alias)=TIMEOUT_B et TIMEOUT_B(int) = 0 seconds)
---> Test 3 (TIMEOUT_A(int)=20 seconds)

2. After running the test

23.10. “Json” parameter 141

Read the ExtensiveAutomation Documentation, Release 20.0

Scenario (TIMEOUT_A(int)=2 seconds et TIMEOUT_B(int)=30 seconds)
---> Test 1 (TIMEOUT_A(int)=2 seconds)
---> Test 2 (TIMEOUT_A(alias)=TIMEOUT_B et TIMEOUT_B(int)= 30 seconds)
---> Test 3 (TIMEOUT_A(int)=2 seconds)

23.12 “global” parameter

The global parameters are added from the web interface or from the REST API. They are global and acces-
sible by all the tests in the same project. The expected value for this parameter is of JSON type.

A selection window in the graphical client allows you to select the parameter to be used in the test.

In the example below, the MY_SERVER test parameter contains the value of the IP key present in the variable
global MY_SERVER which is itself present in the Common project.

Tip: To have a test parameter that contains a list of elements, use the list-global type.

23.13 “Dataset” parameter

The dataset parameter is used to import tdx files. A dataset file is just a text file, it can be created from the
graphical client and saved to the remote test repository.

Sample content of a dataset file with the csv format

142 Chapter 23. Advanced examples

Read the ExtensiveAutomation Documentation, Release 20.0

a;1;administrator
b;2;tester

This file can be used in a test that is important in the settings.

Example to read the variable:

for d in input('DATA').splitlines():
Trace(self).info(d)

23.14 Using an agent

To use an agent, you need two things:

• Deploy the toolbox and select the desired agent.

• Declare the agent in the test

• Configure the adapter to use the agent.

Agents are to be declared from the client in the tab Miscellaneous> Agents

Enabling agent mode on adapters is done with the agentSupport and agent arguments.

agentSupport=input('SUPPORT_AGENT'),
agent=input('AGENT_SOCKET')

self.ADP_REST= SutAdapters.REST.Client(
parent=self,
destinationIp=input('HOST'),
destinationPort=input('PORT'),
debug=input('DEBUG'),
sslSupport=input('USE_SSL'),
agentSupport=input('SUPPORT_AGENT'),
agent=input('AGENT_SOCKET')
)

In the analysis window, it is possible to see the agent used for each event:

23.14. Using an agent 143

Read the ExtensiveAutomation Documentation, Release 20.0

Note: It is advisable to put in test parameter the use of the agent mode.

144 Chapter 23. Advanced examples

CHAPTER24

Requirements

24.1 Server

For now the server can only be run on a Linux environment. It can be run on a virtual or physical environ-
ment.

Features Minimum Recommended
OS Linux or Windows
Python 2.7 or 3.x
Arch x86_64
Memory 4GB 8 GB
CPU 2 core 4 core
Disk ~10GB ~50GB
Network 100Mb/s 1 Gbit/s
User Number 2 5

24.2 Customer

The client can be run on a Windows or Linux environment.

Features Minimum Recommended
OS Windows 7+ Linux CentOS 6.5+ Windows 10+ CentOS7+ or Ubuntu 17+
Arch x86_64
Memory 4GB 8GB
Disk ~1GB ~2GB

Note: The 32-bit architecture is no longer supported since version 17.0.0. However it is still possible to

145

Read the ExtensiveAutomation Documentation, Release 20.0

compile the sources on a 32bits environment.

Important: The plugins for the client are only available for the Windows environment.

24.3 Toolbox

The toolbox can be run on a Windows or Linux environment.

Features Minimum Recommended
OS Windows 7+ Linux Windows 10+ Linux
Arch x86_64
Memory 4GB 8GB
Disk ~1GB

Note: The 32-bit architecture is no longer supported since version 17.0.0. However it is still possible to
compile the sources on a 32bits environment.

Important: The plugins for the client are only available for the Windows environment.

146 Chapter 24. Requirements

CHAPTER25

Architecture

The solution is based on a client/server mode. The tests and adapters are centralized in a server that allows
to quickly provide the same test environment to all users.

The solution consists of several components:

• A scheduler

• A graphical client

• Agents

25.1 Server

The server consists of:

147

Read the ExtensiveAutomation Documentation, Release 20.0

• a reverse proxy (apache)

• a scheduler

• a REST API server

• the test framework

• adapters

• a web interface

25.2 Graphic Client

The graphical client uses a single tcp/8080 (https) stream between the client and the server. The stream is
bidirectional and the client can:

• make calls to the server’s REST API

• receive events from the server via WebSockets.

25.3 Agents

An agent is compulsorily controlled by an adapter via the test server intermediary. It allows to deport the
communication point with the system to test or control. Agents use a single tcp/8080 (https) stream to
communicate with the server.

148 Chapter 25. Architecture

CHAPTER26

Specifications

26.1 Version cycle

The set of software packages for the solution follows the following rules for naming versions.

The version is divided into 3 digits (A.B.C)

• A: the 1st digit indicates the major version. Incrementation of this figure implies

– the addition of major features (with potentially a loss of compatibility with the previous
version)

– adding minor features

– bug fix

• B: The 2nd digit indicates a minor version. Incrementing this number indicates

– adding minor features

– bug fix

• C: the 3rd digit indicates a maintenance version. Incrementing this number indicates

– bug fix

26.2 Server tree

All files handled by the server are stored in the [....]/var/ directory.

scripts/
serverengine/
servercontrols/
serverinterfaces/
serverrepositories/

(continues on next page)

149

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

libs/
testcreatorlib
testexecutorlib/
sutadapters/
var/

tests/
testsresult/
logs/
tasks/

The tests are stored in the [....]/var/tests/ directory, they are organized by project ID.

26.3 Data model

A database is used by the server to store:

• the users of the solution

• the list of projects

• test data (project variables)

• statistics

• the history of executions

Tables Description
xtc-config Server Configuration
xtc-projects List of projects
xtc-relations-projects Relationship between projects and users
xtc-users List of users
xtc-test-environment List of variables in JSON format
xtc-tasks-history History of tasks running on the server

26.4 Passwords management

No password (in plain text) is stored in the database. Using a hash is however used. The hash of the
password is stored in the xtc-users table.

The algorithm used:

150 Chapter 26. Specifications

Read the ExtensiveAutomation Documentation, Release 20.0

26.5 File format

The tests are in XML format. There are several test formats:

• Xml Test Unit

• Xml Test Suite

• Xml Test Plan

• Global Xml Test

Common XML Structure

<?xml version="1.0" encoding="utf-8" ?>
<file>

<properties>
<descriptions>...</descriptions>
<inputs-parameters>...</inputs-parameters>

</properties>
</file>

Test Unit Xml

<?xml version="1.0" encoding="utf-8" ?>
<file>

<properties>....</properties>
<testdefinition><![CDATA[pass]]></testdefinition>
<testdevelopment>1448190694.813723</testdevelopment>

</file>

Test Suite Xml

<?xml version="1.0" encoding="utf-8" ?>
<file>

<properties>...</properties>
<testdefinition><![CDATA[pass]]></testdefinition>
<testexecution><![CDATA[pass]]></testexecution>
<testdevelopment>1448190717.236711</testdevelopment>

</file>

Test Plan Xml

<?xml version="1.0" encoding="utf-8" ?>
<file>

<properties>...</properties>
<testplan id="0">

<testfile>
<id>1</id>
<color />
<file>Common:Defaults/testunit.tux</file>
<enable>2</enable>
<extension>tux</extension>
<alias />
<type>remote</type>
<parent>0</parent>
<properties>....</properties>
<description />

</testfile>

(continues on next page)

26.5. File format 151

Read the ExtensiveAutomation Documentation, Release 20.0

(continued from previous page)

</testplan>
<testdevelopment>1448190725.096519</testdevelopment>

</file>

Test Global Xml

<?xml version="1.0" encoding="utf-8" ?>
<file>

<properties>...</properties>
<testplan id="0">

<testfile>
<id>1</id>
<color />
<file>Common:Defaults/testplan.tpx</file>
<enable>2</enable>
<extension>tpx</extension>
<alias />
<type>remote</type>
<parent>0</parent>
<properties>...</properties>
<description />

</testfile>
</testplan>
<testdevelopment>1448190733.690697</testdevelopment>

</file>

26.6 Storage of test results

The test results are stored on the server in the [....]/var/testsresult directory.

The results are stored:

• by the id of the test projects

• by the date of the day of execution of the test

• and finally by the date and time of the tests.

Organization of the results:

Répertoire: <project_id>
- Répertoire: <yyyy-mm-dd>

- Répertoire: <yyyy-mm-dd_hh:mm:ss.testid.testname.username>
- Fichier: TESTPATH
- Fichier: test.log
- Fichier: test.ini
- Fichier: <testname>_<replayid>.hdr
- Fichier: <testname>_<replayid>_<result>_<nbcomments>.trv
- Fichier: <testname>_<replayid>.tbrp
- Fichier: <testname>_<replayid>.tdsx
- Fichier: <testname>_<replayid>.trd
- Fichier: <testname>_<replayid>.trp
- Fichier: <testname>_<replayid>.trpx
- Fichier: <testname>_<replayid>.trv
- Fichier: <testname>_<replayid>.trvx

152 Chapter 26. Specifications

Read the ExtensiveAutomation Documentation, Release 20.0

Description of files:

• TESTPATH contains the full path for the test result

• test.log contains the internal logs of the test, to be used to debug the test framework

• test.ini contains test-specific parameters

• <testname>_<replayid>.hdr represents the header of the test result

• <testname>_<replayid>_<result>_<nbcomments>.trv contains all the events generated during the ex-
ecution of the tests

• <testname>_<replayid>.tbrp contains the basic report in html format

• <testname>_<replayid>.trp contains the full report in html

• <testname>_<replayid>.trv contains the results report in csv format

26.7 Control Agents

The control of the agents since a test is carried out through:

• the adapters

• and the server

The communication takes place with the exchange of some specific messages:

• init: allows to initialize an agent

• notify: send a message to the agent without waiting for a response

• reset: allows to reset the agent

• error: allows the agent to send an error to the adapter

• data: allows the agent to send data to the adapter

Direction of available communications:

• Agent -> server -> adapter -> test

• Test -> adapter -> server -> agent

Agent
Function Callback

Send an error message def sendError * request * data
Send a “notify” message def sendNotify * request *

data
Send a “data” message def sendData * request * data
Receiving an “init” message def onAgentInit * customer * tid * request
Receiving a “reset” mes-
sage

def onAgentNotify * customer * tid * re-
quest

Receiving a “notify” mes-
sage

def onAgentReset * customer * tid * re-
quest

26.7. Control Agents 153

Read the ExtensiveAutomation Documentation, Release 20.0

Adapter
Function Callback

Receiving an error message def receivedErrorFromAgent * data
Receiving a “notify” message def receivedNotifyFromAgent * data
Receiving a “data” message def receivedDataFromAgent * data
Send an “init” message def initAgent * data
Send a “reset” message def resetAgent
Send a “notify” message def sendNotifyToAgent * data

26.8 The server logs

The server logs are located in the [....]/var/logs/ directory.

output.log server logs

154 Chapter 26. Specifications

CHAPTER27

Contributions

27.1 Solution development

27.1.1 Qt client application

Please refer to the ‘README < https://github.com/ExtensiveAutomation/extensiveautomation-
appclient/blob/master/README.md>‘_

27.1.2 Toolbox

Please refer to the ‘README < https://github.com/ExtensiveAutomation/extensiveautomation-
apptoolbox/blob/master/README.md>‘_

27.1.3 Server

Please refer to the README

27.2 Plugins development for servers

Please refer to the README

27.3 Plugins development for qt client and agents

Please refer to the README

155

https://github.com/ExtensiveAutomation/extensiveautomation-server/blob/master/README.md
https://github.com/ExtensiveAutomation/extensiveautomation-plugins-server/blob/master/README.md
https://github.com/ExtensiveAutomation/extensiveautomation-plugins-client/blob/master/README.md

Read the ExtensiveAutomation Documentation, Release 20.0

27.4 Documentation

The documentation is stored on github in the repository <https://github.com/ExtensiveAutomation/extensiveautomation.readthedocs.io>
_. It is possible to contribute by applying for participation in the deposit.

The documentation is generated by the readthedocs <https://readthedocs.org/> _ service.

156 Chapter 27. Contributions

CHAPTER28

API

28.1 Authentication

Authentication in the API REST can be done with 2 methods:

• By using the function login to obtain a session cookie

• with basic auth

28.1.1 Basic

The basic auth must be used with the api key available through the web interface. The re-generation of the
api key can be done for now only on the server.

python extensiveautomation.py --apikey admin
API Key ID: admin
API Key Secret: d30278d49e4845e45daa748873e2171b14a0c55a

After that, add the header Authorization in your HTTP request.

Authorization: Basic base64(key_id:key_secret)

Note: With the basic auth, it’s not necessary to call the login function.

28.1.2 Session cookie

The authentication by cookie can be done by calling the function login to generate a cookie for the session.
This cookie must be present on all next http request in the header Cookie.

157

Read the ExtensiveAutomation Documentation, Release 20.0

Cookie: session_id=NjQyOTVmOWNlMDgyNGQ2MjlkNzAzNDdjNTQ3ODU5MmU5M

28.2 Usage example

The REST api is available throught the tcp port 443 (https) with the uri /rest.

The following example show how to execute a test with the basic auth.

POST /rest/tests/schedule HTTP/1.1
[...]
Authorization: Basic YWRtaW46N2UwMDExY2I3Y2ZhMGQ1MjM4NGQ1YWYyM2QyODBiMjUyM2EzMTA3ZA==
Content-Type: application/json; charset=utf-8
[...]

{
"project-id": 1,
"test-extension": "tux",
"test-name": "01_Wait",
"test-path": "/Snippets/Do/",
"test-inputs": [{"name": "DURATION", "type": "int", "value": 5}]

}

Received response:

{
"cmd": "/tests/schedule",
"message": "background"
"test-id": "a3f19398-b463-41e8-9e43-af86aac44a59",
"task-id": 17,
"tab-id": 0
"test-name": "01_Wait"

}

28.3 Ressources

Description of most important functions:

Authentication

Execute a test

Read the result of a test executed

158 Chapter 28. API

	Extensive Automation
	Concepts
	Usages
	License
	Author
	Contact

	Download
	Changes Logs
	Current version
	Previous versions

	Client
	The workspace
	The analyzer
	Server Explorer
	Settings
	Complements

	Toolbox
	Deployment
	More

	Web interface
	Tests part
	Admin part

	Get started
	Connection to the server
	Write a test
	Write a scenario
	Execute a test
	Result analysing
	Best practices

	Tests examples
	Testcase (unit)
	Testcase (suite)
	variables
	Scenario
	Test campaign
	Rest API
	SSH controls
	Web browsers
	Android mobile

	Tests Snippets
	Shared data between tests
	Basics actions
	Data Generators
	Networks protocols
	User Interface
	Checks

	Global variables
	Add/delete a variable
	Describe environment test
	Import/export variables

	Assisted designs
	Framework Tabulation
	System tab
	Tabulation application
	Browser Tabulation
	Android Tabulation

	Troubleshooting
	Errors codes
	How to fix

	Installation
	Server
	Web Client
	Qt Client
	Toolbox
	Plugins for client

	Administration
	Start/Stop of the server
	Server status’s
	Server settings

	Projects
	Add a project
	Delete a project
	Link a project to a user

	Users
	Add user
	Delete a user

	Troubleshooting
	Logs
	Frequently Asked Questions

	Tests definitions
	Test Unit
	Test Suite
	Test Plan
	Test Global

	The fundamentals
	Test case
	Test steps
	Cancellation of a test
	Adding trace
	Data
	Put on hold
	Interaction with the tester
	Parameters of a test

	The tracability
	The events
	Test reports
	The logs

	Interoperability
	Adapters
	Third party tools
	Agents

	Test engine
	The scheduler
	Parallelized executions
	Synchronized executions
	Distributed executions

	Advanced examples
	SSH adapter
	HTTP adapter
	Telnet adapter
	MySQL adapter
	SNMP adapter
	FTP adapter (s)
	SFTP adapter
	ChartJS librairies
	“Text” parameter
	“Json” parameter
	“alias” parameter
	“global” parameter
	“Dataset” parameter
	Using an agent

	Requirements
	Server
	Customer
	Toolbox

	Architecture
	Server
	Graphic Client
	Agents

	Specifications
	Version cycle
	Server tree
	Data model
	Passwords management
	File format
	Storage of test results
	Control Agents
	The server logs

	Contributions
	Solution development
	Plugins development for servers
	Plugins development for qt client and agents
	Documentation

	API
	Authentication
	Usage example
	Ressources

